1,321
Views
3
CrossRef citations to date
0
Altmetric
Articles

Thermal analysis of marine structural steel EH36 subject to non-spreading cryogenic spills. Part I: experimental study

, ORCID Icon & ORCID Icon
Pages 1863-1871 | Received 12 May 2021, Accepted 17 Jun 2021, Published online: 08 Jul 2021

References

  • Angus S, Armstrong B, de Reuck KM. 1978. International thermodynamic tables of the fluid state. 5. methane. Elmsford, NY: Pergamon Press Inc. Related Information: Chemical data series No. 16.
  • Barron RF, Nellis GF. 2017. Cryogenic heat transfer. Boca Raton, FL: CRC press.
  • Beaton CF, Hewitt GF. 1989. Physical property data for the design engineer. New York, NY: Hemisphere Publishing.
  • Berejnoi C, Ipiña JP. 2015. Analysis of size and temperature effects in the ductile to brittle transition region of ferritic steels. Eng Fract Mech. 148:180–191.
  • Berenson P. 1962. Experiments on pool-boiling heat transfer. Int J Heat Mass Transfer. 5(10):985–999.
  • Bombardieri C, Manfletti C. 2016. Influence of wall material on nucleate pool boiling of liquid nitrogen. Int J Heat Mass Transfer. 94:1–8.
  • Briscoe F, Shaw P. 1980. Spread and evaporation of liquid. Prog Energy Combust Sci. 6(2):127–140.
  • Bruchhausen M, Holmström S, Lapetite J-M, Ripplinger S. 2017. On the determination of the ductile to brittle transition temperature from small punch tests on grade 91 ferritic-martensitic steel. Int J Press Vessels Pip. 155:27–34.
  • Dabiri A. 1986. Liquid nitrogen cooling considerations of the compact ignition tokamak. Fusion Technol. 10(3P2A):521–526.
  • Dincer AK, Drake EM, Reid RC. 1977. Boiling of liquid nitrogen and methane on water. The effect of initial water temperature. Int J Heat Mass Transfer. 20(2):176–177.
  • DNV. 2009. DNV-OS-B101 Metallic Materials.
  • Drake EM, Jeje AA, Reid RC. 1975. Transient boiling of liquefied cryogens on a water surface: I. nitrogen, methane and ethane. Int J Heat Mass Transfer. 18(12):1361–1368.
  • Ermak D, Koopman R, McRae T, Hogan W. 1982. LNG spill experiments: Dispersion, RPT, and vapor burn analysis.
  • Friend DG, Ely JF, Ingham H. 1989. Thermophysical properties of methane. J Phys Chem Ref Data. 18(2):583–638.
  • Gavelli F, Bullister E, Kytomaa H. 2008. Application of CFD (fluent) to LNG spills into geometrically complex environments. J Hazard Mater. 159(1):158–168.
  • Georgakis C, Congalidis J, Williams GC. 1979. Model for non-instantaneous LNG and gasoline spills. Fuel. 58(2):113–120.
  • Goldwire H Jr., Rodean H, Cederwall R, Kansa E, Koopman R, McClure J, McRae T, Morris L, Kamppinen L, Kiefer R. 1983. Coyote series data report LLNL/NWC 1981 LNG spill tests dispersion, vapor burn, and rapid-phase-transition. Volume 1.[7 experiments with liquefied natural gas, 2 with liquid methane, and one with liquid nitrogen].
  • Horvat A. 2018. CFD methodology for simulation of LNG spills and rapid phase transition (RPT). Process Saf Environ Prot. 120:358–369.
  • Kumar R, Rohilla L, Das AK. 2021. Understanding interfacial behaviour during boiling of nitrogen from liquid-liquid contact plane. Int J Heat Mass Transfer. 165:120661.
  • Li Y, Shterenlikht A, Ren X, He J, Zhang Z. 2019. CAFE based multi-scale modelling of ductile-to-brittle transition of steel with a temperature dependent effective surface energy. Mater Sci Eng, A. 755:220–230.
  • Liu Y, Olewski T, Véchot LN. 2015. Modeling of a cryogenic liquid pool boiling by CFD simulation. J Loss Prev Process Ind. 35:125–134.
  • Luketahanlin A. 2006. A review of large-scale LNG spills: experiments and modeling. J Hazard Mater. 132(2-3):119–140.
  • Majzoobi G, Mahmoudi A, Moradi S. 2016. Ductile to brittle failure transition of HSLA-100 steel at high strain rates and subzero temperatures. Eng Fract Mech. 158:179–193.
  • McRae T, Goldwire H Jr., Koopman R. 1984. Analysis of large-scale LNG/water RPT explosions. Livermore, CA: Lawrence Livermore National Laboratory, UCRL-91832.
  • Morgan D Jr., Morris L, Chan S, Ermak D, McRae T, Cederwall R, Koopman R, Goldwire H Jr., McClure J, Hogan W. 1984. Phenomenology and modeling of liquefied natural gas vapor dispersion.
  • Nam W, Hopperstad OS, Amdahl J. 2018. Modelling of the ductile-brittle fracture transition in steel structures with large shell elements: a numerical study. Mar Struct. 62:40–59.
  • Nguyen L-D, Kim M, Choi B, Chung K, Do K, Kim T. 2020. An evaluation of vaporization models for a cryogenic liquid spreading on a solid ground. Int J Heat Mass Transfer. 146:118848.
  • Nguyen L-D, Kim M, Chung K. 2020. Vaporization of the non-spreading cryogenic-liquid pool on the concrete ground. Int J Heat Mass Transfer. 163:120464.
  • Opschoor G. 1980. The spreading and evaporation of LNG-and burning LNG-spills on water. J Hazard Mater. 3(3):249–266.
  • Paik JK, Kim KJ, Lee JH, Jung BG, Kim SJ. 2017. Test database of the mechanical properties of mild, high-tensile and stainless steel and aluminium alloy associated with cold temperatures and strain rates. Ships Offshore Struct. 12(sup1):S230–S256.
  • Paik JK, Lee DH, Noh SH, Park DK, Ringsberg JW. 2020. Full-scale collapse testing of a steel stiffened plate structure under axial-compressive loading triggered by brittle fracture at cryogenic condition. Ships Offshore Struct. 15(sup1):S29–S45.
  • Park S-I, Kim S-K, FREng JKP. 2020. Safety-zone layout design for a floating LNG-fueled power plant in bunkering process. Ocean Eng. 196:106774.
  • Rodean H, Hogan W, Urtiew P, Goldwire H Jr., McRae T, Morgan D Jr.. 1984. Vapor burn analysis for the Coyote series LNG spill experiments. Livermore, CA (USA): Lawrence Livermore National Lab.
  • Sun B, Guo K, Pareek VK. 2014. Computational fluid dynamics simulation of LNG pool fire radiation for hazard analysis. J Loss Prev Process Ind. 29:92–102.
  • Sun B, Guo K, Pareek VK. 2015. Dynamic simulation of hazard analysis of radiations from LNG pool fire. J Loss Prev Process Ind. 35:200–210.
  • Sun B, Guo K, Pareek VK. 2017. Hazardous consequence dynamic simulation of LNG spill on water for ship-to-ship bunkering. Process Saf Environ Prot. 107:402–413.
  • Sun B, Utikar RP, Pareek VK, Guo K. 2013. Computational fluid dynamics analysis of liquefied natural gas dispersion for risk assessment strategies. J Loss Prev Process Ind. 26(1):117–128.
  • Wuersig G-M, GL JGA, Benjamin Scholz G, Maritime LSM. 2009. Effects of enveloping pool fires on LNG tank containment systems. Proceedings of the GasTech conference: AbuDhabi, UAE.
  • Zhang X, Li J, Zhu J, Qiu L. 2015. Computational fluid dynamics study on liquefied natural gas dispersion with phase change of water. Int J Heat Mass Transfer. 91:347–354.