227
Views
1
CrossRef citations to date
0
Altmetric
Articles

An improved mesh refinement method to study the tip vortex cavitation of a marine propeller

ORCID Icon, &
Pages 2340-2354 | Received 04 Jun 2021, Accepted 04 Oct 2021, Published online: 27 Oct 2021

References

  • Asnaghi A, Svennberg U, Bensow RE. 2018. Analysis of tip vortex inception prediction methods. Ocean Eng. 167:187–203. doi: 10.1016/j.oceaneng.2018.08.053
  • Asnaghi A, Svennberg U, Bensow RE. 2020. Large eddy simulations of cavitating tip vortex flows. Ocean Eng. 195:106703. doi: 10.1016/j.oceaneng.2019.106703
  • Asnaghi A, Svennberg U, Gustafsson R, Bensow RE. 2021. Propeller tip vortex mitigation by roughness application. Appl Ocean Res. 106:102449. doi: 10.1016/j.apor.2020.102449
  • Bakhtiari M, Ghassemi H. 2020. CFD data based neural network functions for predicting hydrodynamic performance of a low-pitch marine cycloidal propeller. Appl Ocean Res. 94:101981. doi: 10.1016/j.apor.2019.101981
  • Barkmann U. 2011. Potsdam Propeller Test Case (PPTC) Open Water Tests with the Model Propeller VP1304, Report 3752, Potsdam.
  • Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE. 2008. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng. 130:1–4.
  • Felli M, Camussi R, Di Felice F. 2011. Mechanisms of evolution of the propeller wake in the transition and far fields. J Fluid Mech. 682:5–53. doi: 10.1017/jfm.2011.150
  • Felli M, Falchi M. 2018. Propeller wake evolution mechanisms in oblique flow conditions. J Fluid Mech. 845:520–559. doi: 10.1017/jfm.2018.232
  • Gaggero S. 2020. Influence of laminar-to-turbulent transition on model scale propeller performances. Part II: cavitating conditions. Ships Offshore Struc. 1–20.
  • Gaggero S, Tani G, Viviani M, Conti F. 2014. A study on the numerical prediction of propellers cavitating tip vortex. Ocean Eng. 92:137–161. doi: 10.1016/j.oceaneng.2014.09.042
  • Gaggero S, Vernengo G, Villa D, Bonfiglio L. 2020. A reduced order approach for optimal design of efficient marine propellers. Ships Offshore Struc. 15(2):200–214. doi: 10.1080/17445302.2019.1606877
  • Gao H, Zhu W, Liu Y, Yan Y. 2019. Effect of various winglets on the performance of marine propeller. Appl Ocean Res. 86:246–256. doi: 10.1016/j.apor.2019.03.006
  • Gong J, Guo CY, Phan-Thien N, Khoo BC. 2020. Hydrodynamic loads and wake dynamics of ducted propeller in oblique flow conditions. Ships Offshore Struc. 15(6):645–660. doi: 10.1080/17445302.2019.1663664
  • Gorji M, Ghassemi H, Mohamadi J. 2019. Effect of rake and skew on the hydrodynamic characteristics and noise level of the marine propeller. Iran J Sci Technol Trans Mech Eng. 43(1):75–85. doi: 10.1007/s40997-017-0108-y
  • Heinke HJ. 2011. Potsdam Propeller Test Case (PPTC) Cavitation Tests with the Model Propeller VP1304, Report 3753, Potsdam.
  • Hu J, Zhang W, Guo H, Sun S, Chen F, Guo C. 2021a. Numerical simulation of propeller wake vortex–rudder interaction in oblique flows. Ships Offshore Struc. 16(2):144–155. doi: 10.1080/17445302.2020.1711630
  • Hu J, Zhang W, Wang C, Sun S, Guo C. 2021b. Impact of skew on propeller tip vortex cavitation. Ocean Eng. 220:108479. doi: 10.1016/j.oceaneng.2020.108479
  • Ku G, Cho J, Cheong C, Seol H. 2021. Numerical investigation of tip-vortex cavitation noise of submarine propellers using hybrid computational hydro-acoustic approach. Ocean Eng. 238:109693. doi: 10.1016/j.oceaneng.2021.109693
  • Kumar P, Mahesh K. 2017. Large eddy simulation of propeller wake instabilities. J Fluid Mech. 814:361–396. doi: 10.1017/jfm.2017.20
  • Lee SJ, Shin JW, Arndt RE, Suh JC. 2018. Attenuation of the tip vortex flow using a flexible thread. Exp Fluids. 59(1):23. doi: 10.1007/s00348-017-2476-x
  • Lu NX, Bensow RE, Bark G. 2014. Large eddy simulation of cavitation development on highly skewed propellers. J Mar Sci Technol. 19(2):197–214. doi: 10.1007/s00773-013-0240-3
  • Muscari R, Di Mascio A, Verzicco R. 2013. Modeling of vortex dynamics in the wake of a marine propeller. Comput Fluids. 73:65–79. doi: 10.1016/j.compfluid.2012.12.003
  • Park SI, Lee SJ, You GS, Suh JC. 2014. An experimental study on tip vortex cavitation suppression in a marine propeller. J Ship Res. 58(3):157–167. doi: 10.5957/jsr.2014.58.3.157
  • Pennings PC, Bosschers J, Westerweel J, Van Terwisga TJC. 2015. Dynamics of isolated vortex cavitation. J Fluid Mech. 778:288–313. doi: 10.1017/jfm.2015.379
  • Sezen S, Atlar M, Fitzsimmons P. 2021a. Prediction of cavitating propeller underwater radiated noise using RANS & DES-based hybrid method. Ships Offshore Struc. 16:93–105. doi: 10.1080/17445302.2021.1907071
  • Sezen S, Uzun D, Ozyurt R, Turan O, Atlar M. 2021b. Effect of biofouling roughness on a marine propeller’s performance including cavitation and underwater radiated noise (URN). Appl Ocean Res. 107:102491. doi: 10.1016/j.apor.2020.102491
  • Song M, Xu L, Peng X, Tang D. 2017. An acoustic approach to determine tip vortex cavitation inception for an elliptical hydrofoil considering nuclei-seeding. Int J Multiph Flow. 90:79–87. doi: 10.1016/j.ijmultiphaseflow.2016.12.008
  • Usta O, Korkut E. 2018. A study for cavitating flow analysis using DES model. Ocean Eng. 160:397–411. doi: 10.1016/j.oceaneng.2018.04.064
  • Usta O, Korkut E. 2019. Prediction of cavitation development and cavitation erosion on hydrofoils and propellers by detached eddy simulation. Ocean Eng. 191:106512. doi: 10.1016/j.oceaneng.2019.106512
  • Villa D, Gaggero S, Tani G, Viviani M. 2020. Numerical and experimental comparison of ducted and non-ducted propellers. J Mar Sci Eng. 8:257. doi: 10.3390/jmse8040257
  • Yilmaz N, Aktas B, Atlar M, Fitzsimmons PA, Felli M. 2020a. An experimental and numerical investigation of propeller-rudder-hull interaction in the presence of tip vortex cavitation (TVC). Ocean Eng. 216:108024. doi: 10.1016/j.oceaneng.2020.108024
  • Yilmaz N, Aktas B, Sezen S, Atlar M, Fitzsimmons PA, Felli M. 2019a. Numerical investigations of propeller-rudder-hull interaction in the presence of tip vortex cavitation. Sixth International Symposium on marine propulsors.
  • Yilmaz N, Atlar M, Khorasanchi M. 2019b. An improved mesh adaption and refinement approach to cavitation simulation (MARCS) of propellers. Ocean Eng. 171:139–150. doi: 10.1016/j.oceaneng.2018.11.001
  • Yilmaz N, Dong X, Aktas B, Yang C, Atlar M, Fitzsimmons PA. 2020b. Experimental and numerical investigations of tip vortex cavitation for the propeller of a research vessel, “The princess royal”. Ocean Eng. 215:107881. doi: 10.1016/j.oceaneng.2020.107881
  • Yilmaz N, Khorasanchi M, Atlar M. 2017. An investigation into computational modelling of cavitation in a propeller’s slipstream. Fifth International Symposium on marine propulsion.
  • Yu C, Dong XQ, Yang CJ, Li W, Noblesse F. 2019. Experimental investigation of the effects of blade geometry on pressure fluctuation and noise of tunnel thrusters. Ships Offshore Struc. 14(3):238–248. doi: 10.1080/17445302.2018.1496566
  • Zhao MS, Zhao WW, Wan DC. 2020. Numerical simulations of propeller cavitation flows based on OpenFOAM. J Hydrodyn. 32(6):1071–1079. doi: 10.1007/s42241-020-0071-8
  • Zhu W, Gao H. 2019. A numerical investigation of a winglet-propeller using an LES model. J Mar Sci Eng. 7(10):333. doi: 10.3390/jmse7100333
  • Zhu W, Gao H. 2021. Hydrodynamic characteristics of bio-inspired marine propeller with various blade sections. Ships Offshore Struc. 16(2):156–171. doi: 10.1080/17445302.2020.1713039
  • Zhu ZF, Zhou F, Li D. 2017. Numerical prediction of tip vortex cavitation for marine propellers in non-uniform wake. Chin J Mech Eng. 30(4):804–818. doi: 10.1007/s10033-017-0145-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.