201
Views
0
CrossRef citations to date
0
Altmetric
Articles

Prediction of local scour depth of sea-crossing bridges based on the energy balance theory

ORCID Icon, &
Pages 2574-2587 | Received 22 Jul 2021, Accepted 08 Nov 2021, Published online: 04 Dec 2021

References

  • Alemi M, Pêgo JP, Maia R. 2019. Numerical simulation of the turbulent flow around a complex bridge pier on the scoured bed. Eur J Mech B-Fluids. 76:316–331. doi:10.1016/j.euromechflu.2019.03.011.
  • Arneson LA, Zevenbergen LW, Lagasse PF, Clopper PE. 2012. Evaluating scour at bridges. FHWA-HIF-12-003, 5th Ed., U.S. Dept. of Transportation Federal Highway Administration, Washington, DC.
  • Azamathulla H, Ghani AA. 2011. Anfis-based approach for predicting the scour depth at culvert outlets. J Pipeline Syst Eng Pract. 2(1):35–40. doi:10.1061/(ASCE)PS.1949-1204.0000066.
  • Baghbadorani DA, Ataie-Ashtiani B, Beheshti A, Hadjzaman M, Jamali M. 2018. Prediction of current-induced local scour around complex piers: review, revisit, and integration. Coast Eng. 133:43–58. doi:10.1016/j.coastaleng.2017.12.006.
  • Chiew YM, Melville BW. 1987. Local scour around bridge piers. J Hydraul Res. 25(1):15–26.
  • Dey S, Barbhuiya AK. 2005. Time variation of scour at abutments. J Hydraul Eng. 131(1):11–23. doi:10.1061/(ASCE)0733-9429(2005)131:1(11).
  • Ebtehaj I, Bonakdari H, Moradi F, Gharabaghi B, Khozani ZS. 2018. An integrated framework ofExtreme learning machines for predicting scour at pile groups in clear water condition. Coast Eng. 135:1–15. doi:10.1016/j.coastaleng.2017.12.012.
  • Ettema R, Constantinescu G, Melville B. 2011. Evaluation of bridge scour research: Pier scour processes and predictions. NCHRP Web-Only Document No.175. accessed http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_w175.pdf.
  • Flow Science Inc. 2008. FLOW-3D User’s manual, 9.3 ed. Los Alamos: Flow Science Inc.
  • Guo J. 2020. Analysis of bridge local scour and safety protection. Beijing, China: Science Press.
  • Guo J, Hang D, Zhu X. 2020. Prediction of crack propagation in u-rib components based on the markov chain. J Bridge Eng. 25(10):04020089. doi:10.1061/(ASCE)BE.1943-5592.0001624.
  • Guo J, He JX. 2020. Dynamic response analysis of ship-bridge collisions experiment. J Zhejiang Univ – Sc A. 21(7):525–534. doi:10.1631/jzus.A1900382.
  • Guo J, Hu CJ, Zhu MJ, Ni YQ. 2021. Monitoring-based evaluation of dynamic characteristics of a long span suspension bridge under typhoons. J Civ Struct Health. doi:10.1007/s13349-020-00458-5.
  • Guo J, Jiang B. 2020. Research progress and key issues of bridge pier scour in recent 30 years. China J Highway Transport. 33(7):1–16. doi:10.19721/j.cnki.1001-7372.2020.07.001.
  • Guo J, Wu J, Wang J. 2019. Study on local scouring monitoring of Hangzhou Bay Bridge. Paper presented at the The 12th International Workshop on Structural Health Monitoring, Stanford, California, USA.
  • Guo J, Zhu MJ. 2020. Static aerodynamic force coefficients for an arch bridge girder with two cross sections. Wind Struct. 31(3):209–216. doi:10.12989/was.2020.31.3.209.
  • Han H, Chen Y, Sun Z. 2018. Estimation of maximum local scour depths at multiple piles of sea/bay-crossing bridges. KSCE J Civ Eng. 1–9. doi:10.1007/s12205-018-0769-0.
  • Ji C, Yang X, Yu Y, Cui Y, Srinil N. 2020. Numerical simulations of flows around a dual step cylinder with different diameter ratios at low reynolds number. Eur J Mech B-Fluids. 79:332–344. doi:10.1016/j.euromechflu.2019.09.016.
  • Kim H, Nabi M, Kimura I, Shimizu Y. 2014. Numerical investigation of local scour at two adjacent cylinders. Adv Water Resour. 70:131–147. doi:10.1016/j.advwatres.2014.04.018.
  • Kitsikoudis V, Kirca VSO, Yagci O, Celik MF. 2017. Clear-water scour and flow field alteration around an inclined pile. Coast Eng. 129:59–73. doi:10.1016/j.coastaleng.2017.09.001.
  • Kong X, Michael SC, Song G, Cai CS. 2017. Scour monitoring system using fiber bragg grating sensors and water-swellable polymers. J Bridge Eng. 22(7):04017029. doi:10.1061/(ASCE)BE.1943-5592.0001569.
  • Lagasse PF, Richardson EV. 2001. ASCE compendium of stream stability and bridge scour papers. J Hydraul Eng. 531–533. doi:10.1061/(ASCE)0733-9429(2001)127:7(531).
  • Lee SO, Sturm TW. 2009. Effect of sediment size scaling on physical modeling of bridge pier scour. J Hydraulic Eng. 135(10):793–802. doi:10.1061/(ASCE)HY.1943-7900.0000091.
  • Li S, He S, Li H, Jin Y. 2017. Scour depth determination of bridge piers based on time-varying modal parameters: application to Hangzhou Bay bridge. J Bridge Eng. 22(12):04017107. doi:10.1061/(ASCE)BE.1943-5592.0001154.
  • Manes C, Brocchini M. 2015. Local scour around structures and the phenomenology of turbulence. J Fluid Mech. 779:309–324. doi:10.1017/jfm.2015.389.
  • Mao J, Yang L. 2021. Anti-scouring design and Construction of donghai bridge deepwater group pile foundation. Constr Technol (in China). 50(15):107–109. http://kns.cnki.net/kcms/detail/10.1768.TU.20210902.1148.024.html.
  • Melville B. 1975. Local scour of bridge sites. Auckland: University of Auckland.
  • Melville B, Coleman SE. 2000. Bridge scour. Colorado: Water Resources Publication, LLC.
  • Ministry of Railways of the People’s Republic of China. 1999. Code for survey and design on hydrology of railway engineering. TB 10017-99. Beijing: China Railway Publishing House Co., Ltd. press (in Chinese).
  • Mohammad Z, Beheshti A, Behzad A, Sabbagh-Yazdi SR. 2009. Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Appl Soft Comput. 9(2):746–755. doi:10.1016/j.asoc.2008.09.006.
  • Petersen TU, Sumer BM, Fredsøe J, Raaijmakers TC, Schouten JJ. 2015. Edge scour at scour protections around piles in the marine environment - laboratory and field investigation. Coast Eng. 106(DEC.):42–72. doi:10.1016/j.coastaleng.2015.08.007.
  • Qi M, Li J, Chen Q. 2016. Comparison of existing equations for local scour at bridge piers: parameter influence and validation. Nat Hazards. 82(3):2089–2105. doi:10.1007/s11069-016-2287-z.
  • Raudkivi AJ. 1986. Functional trends of scour at bridge piers. J Hydraulic Eng. 112(1):1–13. doi:10.1061/(ASCE)0733-9429(1986)112:1(1).
  • Richardson J, Panchang V. 1998. Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng. 124(5):530–540. doi:10.1061/(ASCE)0733-9429(1998)124:5(530).
  • Shan S, Bilal H, Lu X. 2008. Numerical simulation of an oscillating flow past a circular cylinder in the vicinity of a plane wall. J Hydrodyn. 20(5):547–552. doi:10.1016/S1001-6058(08)60093-1.
  • Sharafi H, Ebtehaj I, Bonakdari H, Zaji AH. 2016. Design of a support vector machine with different kernel functions to predict scour depth around bridge piers. Nat Hazards. 84(3):2145–2162. doi:10.1007/s11069-016-2540-5.
  • Shi Y, Wei R, Zhang B, Zhang Z. 2016. The technical report on the local scour tracking observation of the bridge pier of Hangzhou Bay crossing-sea bridge. Hangzhou, Zhejiang, China: Zhejiang Institute of Hydraulics and Estuary.
  • Sumer BM, Fredsøe J. 2002. The mechanics of scour in the marine environment. In Advanced Series on Ocean Engineering, vol. 17. Singapore: World Scientific.
  • Unger J, Hager WH. 2007. Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers. Exp Fluids. 42(1):1–19. doi:10.1007/s00348-006-0209-7.
  • Wang C, Yu X, Liang F. 2017. A review of bridge scour: mechanism, estimation, monitoring and countermeasures. Nat Hazards. 87(3):1–26. doi:10.1007/s11069-017-2842-2.
  • Zdravkovich MM. 1997. Flow around circular cylinders. Oxford: Oxford University press.
  • Zhang Q, Zhou XL, Wang JH. 2017. Numerical investigation of local scour around three adjacent piles with different arrangements under current. Ocean Eng. 142:625–638. doi:10.1016/j.oceaneng.2017.07.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.