379
Views
1
CrossRef citations to date
0
Altmetric
Articles

A framework for quantifying fatigue deterioration of ship structures under changing climate conditions

, &
Pages 2745-2760 | Received 08 Jul 2021, Accepted 06 Dec 2021, Published online: 11 Jan 2022

References

  • Aarnes OJ, Reistad M, Breivik Ø, Bitner-Gregersen E, Ingolf Eide L, Gramstad O, Magnusson AK, Natvig B, Vanem E. 2017. Projected changes in significant wave height toward the end of the 21st century: Northeast A tlantic. J Geophys Res: Oceans. 122(4):3394–3403.
  • ABS. 2017. Springing assessment for container carriers and ore carriers. Houston, TX, USA: American Bureau of Shipping.
  • Agarwal A, Venugopal V, Harrison GP. 2013. The assessment of extreme wave analysis methods applied to potential marine energy sites using numerical model data. Renewable Sustainable Energy Rev. 27:244–257.
  • Albrecht P, Yazdani N. 1986. Risk analysis of extending bridge service life. College Park, MD: Dept. of Civil Engineering, University of Maryland.
  • Andersen MR. 1998. Fatigue crack initiation and growth in ship structures. Denemark: Technical University of Denmark.
  • Barsom JM, Rolfe ST. 1987. Fracture and fatigue control in structures 2nd ed. New Jersey, USA: Englewood Cliffs.
  • Bennett S, Hudson D, Temarel P. 2013. The influence of forward speed on ship motions in abnormal waves: experimental measurements and numerical predictions. J Fluids Struct. 39:154–172.
  • Bernard EN, Robinson AR. 2009. Tsunamis (Vol. 15). Cambridge, MA, USA: Harvard University Press.
  • Bitner-Gregersen EM, Vanem E, Gramstad O, Hørte T, Aarnes OJ, Reistad M, Breivik Ø, Magnusson AK, Natvig B. 2018. Climate change and safe design of ship structures. Ocean Eng. 149:226–237.
  • Boone AA, Xue Y, De Sales F, Comer RE, Hagos S, Mahanama S, Schiro K, Song G, Wang G, Li S. 2016. The regional impact of land-Use land-cover change (LULCC) over West Africa from an ensemble of global climate models under the auspices of the WAMME2 project. Clim Dyn. 47(11):3547–3573.
  • Bretschneider CL. 1959. Wave variability and wave spectra for wind-generated gravity waves. Washington, D.C, USA: US Army Corps of Engineers, Beach Erosion Board.
  • Bricheno LM, Wolf J. 2018. Future wave conditions of Europe, in response to high-end climate change scenarios. J Geophys Res: Oceans. 123(12):8762–8791.
  • Brocks W, Scheider I. 2001. Numerical aspects of the path-dependence of the J-integral in incremental plasticity. GKSS Forschungszentrum, Geesthacht. 1:1–33.
  • Brown JM, Wolf J, Souza AJ. 2012. Past to future extreme events in Liverpool Bay: model projections from 1960–2100. Clim Change. 111(2):365–391.
  • Chen J-p, Zhu D-x. 2010. Numerical simulations of wave-induced ship motions in time domain by a Rankine panel method. J Hydrodyn. 22(3):373–380.
  • Chung H-Y. 2004. Fatigue reliability and optimal inspection strategies for steel bridges. Doctoral dissertation, The University of Texas at Austin, Austin, TX, USA.
  • CSA. 2004. General requirements for rolled or welded Structural Quality Steel; Structural Quality steel. Ontario, Canada: Canadian Standards Association.
  • Decò A. 2013. Risk-based approach for life-cycle assessment and management of bridges and ship structures. Doctoral dissertation, Lehigh University, Bethlehem, PA, USA.
  • Decò A, Frangopol DM, Zhu B. 2012. Reliability and redundancy assessment of ships under different operational conditions. Eng Struct. 42:457–471.
  • Dexter RJ, Mahmoud HN, Pilarski P. 2005. Propagation of long cracks in stiffened box-sections under bending and stiffened single panels under axial tension. Int J Steel Struct. 5(3):181–188.
  • Dexter RJ, Pilarski PJ. 2002. Crack propagation in welded stiffened panels. J Constr Steel Res. 58(5–8):1081–1102.
  • Ding Z, Wang X, Gao Z, Bao S. 2017. An experimental investigation and prediction of fatigue crack growth under overload/underload in Q345R steel. Int J Fatigue. 98:155–166.
  • Dinovitzer A. 2003. Life expectancy assessment of ship structures. Washington, D.C, USA: Ship Structure Committee.
  • DNV. 1984. Fatigue strength analysis for mobile offshore units: classification notes No. 30.2. Høvik, Norway: Det Norske Veritas.
  • DNV. 2001. Fatigue assessment of ship structures. Høvik, Norway: Det Norske Veritas.
  • Doré MJ, Maddox SJ. 2013. Accelerated fatigue crack growth in 6082 T651 aluminium alloy subjected to periodic underloads. Procedia Eng. 66:313–322.
  • Drummen I, Wu M, Moan T. 2009. Experimental and numerical study of containership responses in severe head seas. Mar Struct. 22(2):172–193.
  • Espinosa AA, Fellows NA, Durodola JF, Fellows LJ. 2017. Determination of crack growth for 6082-T6 aluminium subjected to periodic single and block overloads and underloads using a two dimensional finite element model. Int J Fatigue. 105:244–261.
  • Faltinsen O. 1993. Sea loads on ships and offshore structures (Vol. 1). Trondheim, Norway: Norwegian Institute of Technology, Cambridge University Press.
  • François D, Pineau A, Zaoui A. 1998. Mechanical behaviour of materials. Dordrecht, Netherlands: Springer.
  • Gope PC. 2016. Probabilistic model of fatigue crack propagation and estimation of probability-confidence bounded a–N curves. Int J Comput Methods Eng Sci Mech. 17(4):298–314.
  • Grabemann I, Weisse R. 2008. Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dyn. 58(3–4):199–212.
  • Guedes Soares C, Teixeira A. 2000. Structural reliability of two bulk carrier designs. Mar Struct. 13(2):107–128.
  • Hansen PF, Hansen AM. 1994. Reliability analysis of a midship section. Lyngby, Denmark: Danmarks Tekniske Universitet, Instituttet for Skibs-og Havteknik.
  • Hasselmann K, Olbers D. 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzung zur Deut. Hydrogr. Z., Reihe A (8). 12:1–95.
  • Hawkins E, Sutton R. 2009. The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc. 90(8):1095–1108.
  • Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I. 2019. ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 10:252–266.
  • Hess PE, Bruchman D, Assakkaf IA, Ayyub BM. 2002. Uncertainties in material and geometric strength and load variables. Nav Eng J. 114(2):139–166.
  • Hibbitt D, Karlsson B, Sorensen P. 2013. Abaqus/CAE user’s guide, ABAQUS 6.11. Providence, RI, USA: Dassault Systèmes Simulia Corp.
  • Hørte T, Wang G, White N. 2007. “Calibration of the hull girder ultimate capacity criterion for double hull tankers,” In Proceedings from the 10th international Symp on Practical Designs of Ships and Other Floating Structures, Houston, TX, USA.
  • Huang X, Torgeir M, Cui W. 2008. An engineering model of fatigue crack growth under variable amplitude loading. Int J Fatigue. 30(1):2–10.
  • Hughes OF. 1983. Ship structural design: a rationally-based, computer-aided, optimization approach. Oakland, CA, USA: Wiley-Interscience.
  • IACS. 2021. Common structural rules for bulk carriers and oil tankers. London, UK: The International Association of Classification Societies.
  • Janssen PA. 2015. Notes on the maximum wave height distribution. Reading, UK: European Centre for Medium-Range Weather Forecasts.
  • Kent E, Hall A, Leader VTT. 2010. “The Voluntary Observing Ship (VOS) Scheme,” In Proceedings from the 2010 AGU Ocean Sciences Meeting. Washington DC, USA: American Geophysical Union, 551–561.
  • Khandel O, Soliman M. 2019. Integrated framework for quantifying the effect of climate change on the risk of bridge failure due to floods and flood-induced scour. J Bridge Eng. 24(9):04019090.
  • Khandel O, Soliman M. 2021. Integrated framework for assessment of time-variant flood fragility of bridges using deep learning neural networks. J Infrastruct Syst. 27(1):04020045.
  • Kumar VS, Naseef TM. 2015. Performance of ERA-Interim wave data in the nearshore waters around India. J Atmos Ocean Technol. 32(6):1257.
  • Lindstad H, Eskeland GS. 2015. Low carbon maritime transport: How speed, size and slenderness amounts to substantial capital energy substitution. Transp Res Part D: Transport Environ. 41:244–256.
  • Lu Y-c, Yang F-p, Chen T. 2019. Effect of single overload on fatigue crack growth in QSTE340TM steel and retardation model modification. Eng Fract Mech. 212:81–94.
  • Maljaars J, Vrouwenvelder A. 2014. Probabilistic fatigue life updating accounting for inspections of multiple critical locations. Int J Fatigue. 68:24–37.
  • Mao W, Ringsberg JW, Rychlik I, Li Z. 2012. Theoretical development and validation of a fatigue model for ship routing. Ships Offsh Struct. 7(4):399–415.
  • Marques B, Borges M, Antunes F, Vasco-Olmo J, Díaz F, James M. 2021. Limitations of small-scale yielding for fatigue crack growth. Eng Fract Mech. 252:107806.
  • McPherson R. 2016. Impacts of climate change on flows in the Red river basin, report No. G13AC00386. Norman, OK, USA: South Central Climate Science Center.
  • Mehrzadi M, Taheri F. 2013. A material sensitive modified wheeler model for predicting the retardation in fatigue response of AM60B due to an overload. Int J Fatigue. 55:220–229.
  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma ML, Lamarque J-F, Matsumoto K, Montzka SA, Raper SC, Riahi K. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change. 109(1):213–241.
  • Michaelson RW. 2000. User's guide for SPECTRA: version 8.3 (No. NSWCCD-65-TR-2000/07). Bethesda, MD, USA: Naval Surface Warfare Center, Carderock Div.
  • Newman JC, Phillips EP, Swain M. 1999. Fatigue-life prediction methodology using small-crack theory. Int J Fatigue. 21(2):109–119.
  • Nicholls RJ, Dawson RJ, Day SA. 2015. Broad scale coastal simulation. Dordrecht, Netherlands: Springer.
  • Nussbaumer AC. 1994. Propagation of long fatigue cracks in multi-cellular box beams. Doctoral dissertation, Lehigh University, Bethlehem, PA, USA.
  • Nussbaumer AC, Fisher JW, Dexter RJ. 1999. Behavior of long fatigue cracks in cellular box beam. J Struct Eng. 125(11):1232–1238.
  • Ochi M. 2003. Hurricane generated seas. Oxford, UK: Elsevier.
  • Paris P, Erdogan F. 1963. A critical analysis of crack propagation laws. J Basic Eng. 85(1):528–533.
  • Pierson Jr WJ, Moskowitz L. 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of SA kitaigorodskii. J Geophys Res. 69(24):5181–5190.
  • Podgórski K, Rychlik I, Machado UE. 2000. Exact distributions for apparent waves in irregular seas. Ocean Eng. 27(9):979–1016.
  • Reguero BG, Losada IJ, Méndez FJ. 2019. A recent increase in global wave power as a consequence of oceanic warming. Nat Commun. 10(1):1–14.
  • Rice JR. 1968. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech. 35:379–386.
  • Ritchie R. 1983. Why ductile fracture mechanics? J Eng Mater Technol, Trans of the ASME. 105(1):1–7.
  • Rodrigue J-P, Comtois C, Slack B. 2016. The geography of transport systems. London, UK: Routledge.
  • Shahani AR, Shakeri I, Rans CD. 2020. Two engineering models for predicting the retardation of fatigue crack growth caused by mixed mode overload. Int J Fatigue. 132:105378.
  • Shakeri I, Shahani AR, Rans CD. 2021. Fatigue crack growth of butt welded joints subjected to mixed mode loading and overloading. Eng Fract Mech. 241:107376.
  • Shi H, Cao X, Li Q, Li D, Sun J, You Z, Sun Q. 2021. Evaluating the accuracy of ERA5 wave reanalysis in the water around China. J Ocean Univ China. 20(1):1–9.
  • Sikora JP. 1998. “Cumulative lifetime loadings for naval ships,” In Proceedings from the 1998 International Mechanical Engineering Congress & Exposition, Anaheim, CA, USA.
  • Soliman M, Frangopol DM, Mondoro A. 2016. A probabilistic approach for optimizing inspection, monitoring, and maintenance actions against fatigue of critical ship details. Struct Saf. 60:91–101.
  • Solomon S, Manning M, Marquis M, Qin D. 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). New York, NY, USA: Cambridge university press.
  • Stenseng A. 1996. Cracks and structural redundancy. Mar Technol SNAME News. 33(4):290–298.
  • Stocker T. 2014. Climate change 2013: the physical science basis: Working group I contribution to the fifth assessment report of the Intergovernmental Panel on climate change. New York, NY, USA: Cambridge university press.
  • Stopa JE, Cheung KF. 2014. Intercomparison of wind and wave data from the ECMWF reanalysis Interim and the NCEP climate Forecast system reanalysis. Ocean Model. 75:65–83.
  • Stott P. 2016. How climate change affects extreme weather events. Science. 352(6293):1517–1518.
  • Tada H, Paris P, Irwin G. 2000. The analysis of cracks handbook. ASME Press. 2:1.
  • Taheri F, Trask D, Pegg N. 2003. Experimental and analytical investigation of fatigue characteristics of 350WT steel under constant and variable amplitude loadings. Mar Struct. 16(1):69–91.
  • Taylor KE, Stouffer RJ, Meehl GA. 2012. An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc. 93(4):485–498.
  • Tomita Y, Matobat M, Kawabel H. 1995. Fatigue crack growth behavior under random loading model simulating real encountered wave condition. Mar Struct. 8(4):407–422.
  • Tupper EC. 2013. Introduction to naval architecture. Oxford, UK: Butterworth-Heinemann.
  • Vanem E, Bitner-Gregersen EM, Wikle CK. 2013. Bayesian hierarchical space-time models with application to significant wave height. Høvik, Norway: Ocean Engineering and Oceanography: Springer.
  • Veen D, Gourlay T. 2012. A combined strip theory and smoothed particle Hydrodynamics approach for estimating slamming loads on a ship in head seas. Ocean Eng. 43:64–71.
  • Vettor R, Guedes Soares C. 2015. Detection and analysis of the main routes of voluntary observing ships in the North atlantic. The J Navig. 68(2):397–410.
  • Wang Z. 2000. Hydroelectricity of high speed ships. Kgs. Lyngby, Denmark: Technical University of Denmark.
  • Wheeler O. 1972. Spectrum loading and crack growth. J Basic Eng, Trans. of ASCE. 94(1):181–186.
  • Willenborg J, Engle R, Wood H. 1971. A crack growth retardation model using an effective stress concept. Dayton, OH, USA: Air Force Flight Dynamics Lab.
  • Williams PD, Cullen MJ, Davey MK, Huthnance JM. 2013. Mathematics applied to the climate system: outstanding challenges and recent progress. Philos Transact A Math Phys Eng Sci. 371(1991):20120518–20120518.
  • Yuen B, Taheri F. 2006. Proposed modifications to the Wheeler retardation model for multiple overloading fatigue life prediction. Int J Fatigue. 28(12):1803–1819.
  • Zacharioudaki A, Pan S, Simmonds D, Magar V, Reeve DE. 2011. Future wave climate over the west-European shelf seas. Ocean Dyn. 61(6):807–815.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.