140
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical analysis of pipe–soil interaction between SCR and nonlinear seabed based on co-rotational approach

, ORCID Icon, , , &
Pages 855-873 | Received 21 Nov 2022, Accepted 09 May 2023, Published online: 18 May 2023

References

  • Antonio LM, Pavanello R, Barros PLDA. 2018. Marine pipeline–seabed interaction modeling based on Kerr-type foundation. Appl Ocean Res. 80:228–239. doi:10.1016/j.apor.2018.09.004.
  • Aubeny CP, Biscontin G. 2009. Seafloor-riser interaction model. Int J Geomech. 9(3):133–141. doi:10.1061/(ASCE)1532-3641(2009)9:3(133).
  • Battini JM, Pacoste C. 2002. Co-rotational beam elements with warping effects in instability problems. Comput Methods Appl Mech Eng. 191(17–18):1755–1789. doi:10.1016/S0045-7825(01)00352-8.
  • Belytschko T, Glaum LW. 1979. Applications of higher order corotational stretch theories to nonlinear finite element analysis. Comput Struct. 10(1–2):175–182. doi:10.1016/0045-7949(79)90085-3.
  • Belytschko T, Hsieh BJ. 2010. Non-linear transient finite element analysis with convected co-ordinates. Int J Numer Methods Eng. 7(3):255–271. doi:10.1002/nme.1620070304.
  • Bridge C, Howells H, Toy N, Parke GAR, Woods R. 2003. Full-scale model tests of a steel catenary riser. WIT Trans Built Environ. 71:107–116.
  • Bridge C, Willis N. 2002. Steel catenary risers – results and conclusions from large scale simulations of seabed interaction. In: Annual Deep Offshore Technology International Conference & Exhibition. Surrey: 2H Offshore Engineering Ltd.
  • Chatterjee S, Randolph MF, White DJ. 2012. The effects of penetration rate and strain softening on the vertical penetration resistance of seabed pipelines. Geotechnique. 62(7):573–582. doi:10.1680/geot.10.P.075.
  • Cheng Y, Tang L, Fan T. 2020. Dynamic analysis of deepwater steel lazy wave riser with internal flow and seabed interaction using a nonlinear finite element method. Ocean Eng. 209:107498. doi:10.1016/j.oceaneng.2020.107498.
  • Crisfield MA. 1990. A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput Methods Appl Mech Eng. 81(2):131–150. doi:10.1016/0045-7825(90)90106-V.
  • Crisfield MA, Cole G. 1990. Co-rotational beam elements for two- and three-dimensional structures. Discret Methods Struct Mech. 1–2. http://www.scopus.com/inward/record.url?eid=2-s2.0-0037533932&partnerID=tZOtx3y1.
  • Crisfield MA, Moita GF. 1996. A co-rotational formulation for 2-D continua including incompatible modes. Int J Numer Methods Eng. 39(15):2619–2633. doi:10.1002/(SICI)1097-0207(19960815)39:15<2619::AID-NME969>3.0.CO;2-N.
  • Kordkheili SAH, Bahai H. 2008. Non-linear finite element analysis of flexible risers in presence of buoyancy force and seabed interaction boundary condition. Arch Appl Mech. 78:765–774. doi:10.1007/s00419-007-0190-5.
  • Kunert HG, Otegui JL, Marquez A. 2012. Nonlinear FEM strategies for modeling pipe–soil interaction. Eng Fail Anal. 24:46–56. doi:10.1016/j.engfailanal.2012.03.008.
  • Langford T, Dyvik R, Cleave R. 2007. Offshore pipeline and riser geotechnical model testing: practice and interpretation. In: International Conference on Offshore Mechanics and Arctic Engineering. San Diego; p. 443–452. doi:10.1115/OMAE2007-29458.
  • Leister P, Barros A, Pavanello R, Mesquita E, Morooka CK. 2009. SCR-seafloor interaction model and WINKLER, PASTERNAK and KERR elastic basis beam theories. In: International Conference on Offshore Mechanics and Arctic Engineering. Honolulu; p. 1–7. http://www.asme.org/about-asme/terms-of-use.
  • Oran C. 1973. Tangent stiffness in space frames. J Struct Div. 99(6):987–1001.
  • Oran C, Kassimali A. 1976. Large deformations of framed structures under static and dynamic loads. Comput Struct. 6(6):539–547. doi:10.1016/0045-7949(76)90050-X.
  • Randolph M, Quiggin P. 2009. Nonlinear hysteretic seabed model for catenary pipeline contact. In: International Conference on Offshore Mechanics and Arctic Engineering. Honolulu; p. 1–10. http://www.asme.org/about-asme/terms-of-use.
  • Randolph MF, White DJ. 2008. Pipeline embedment in deep water: processes and quantitative assessment. In: Offshore Technology Conference. Houston; p. 5–8.
  • Ruan W, Shang Z, Wu J. 2019. Effective static stress range estimation for deepwater steel lazy-wave riser with vessel slow drift motion. Ships Offshore Struct. 14(8):899–909. doi:10.1080/17445302.2019.1578101.
  • Ruan W, Shi J, Sun B, Qi K. 2021. Study on fatigue damage optimization mechanism of deepwater lazy wave risers based on multiple waveform serial arrangement. Ocean Eng. 228:108926. doi:10.1016/j.oceaneng.2021.108926.
  • Shi JB, Liu ZY, Hong JZ. 2017. The co-rotational formulation for flexible multibody dynamics. Chinese Q Mech. 38(2):197–214. doi:10.15959/j.cnki.0254-0053.2017.02.002.
  • Shiri H. 2014. Response of steel catenary risers on hysteretic non-linear seabed. Appl Ocean Res. 44:20–28. doi:10.1016/j.apor.2013.10.006.
  • Tang YQ, Du EF, Wang JQ, Qi JN. 2020. A co-rotational curved beam element for geometrically nonlinear analysis of framed structures. Structures. 27(3):1202–1208. doi:10.1016/j.istruc.2020.07.030.
  • Thethi M. 2001. Soil interaction effects on simple catenary riser response. Pipes Pipelines Int. 46(3):15–24.
  • Trapper PA. 2020a. Feasible numerical analysis of steel lazy-wave riser. Ocean Eng. 195:106643. doi:10.1016/j.oceaneng.2019.106643.
  • Trapper PA. 2020b. Static analysis of offshore pipe-lay on flat inelastic seabed. Ocean Eng. 213:107673. doi:10.1016/j.oceaneng.2020.107673.
  • Trapper PA. 2020c. Feasible numerical analysis of steel lazy-wave riser. Ocean Eng. 195:106643. doi:10.1016/j.oceaneng.2019.106643.
  • Wang D, White DJ, Randolph MF. 2010. Large-deformation finite element analysis of pipe penetration and large-amplitude lateral displacement. Can Geotech J. 47(8):842–856. doi:10.1139/T09-147.
  • Wang J, Duan M, Fan J, Liu Y. 2013. Static equilibrium configuration of deepwater steel lazy-wave riser. Proceedings of International Offshore and Polar Engineering Conference, Anchorage, AK. Vol. 9, p. 995–998.
  • Wang L, Zhang J, Yuan F, Li K. 2014. Interaction between catenary riser and soft seabed: large-scale indoor tests. Appl Ocean Res. 45:10–21. doi:10.1016/j.apor.2013.12.002.
  • Wang Y, Duan M, Gu J. 2019. Analytical model for transfer process of deepwater steel lazy-wave riser on elastic seabed. J Mar Sci Technol. 24(1):123–133. doi:10.1007/s00773-018-0540-8.
  • Wang Y, Duan M, Zhang Y. 2017. Experimental and numerical investigation of vertical pipe–soil interaction considering pipe velocity. Ships Offshore Struct. 12(1):77–85. doi:10.1080/17445302.2015.1112178.
  • Wempner G. 1969. Finite elements, finite rotations and small strains of flexible shells. Int J Solids Struct. 5(2):117–153.
  • Willis NRT, West PTJ. 2001. Interaction between deepwater catenary risers and a soft seabed: large scale sea trials. Society of Petroleum Engineers (SPE). Houston; p. 1–9. doi:10.4043/13113-ms.
  • You J, Biscontin G, Aubeny C. 2008. Seafloor interaction with steel catenary risers. Proceedings of Eighteenth International Offshore and Polar Engineering Conference, Vancouver; p. 110–117.
  • You JH. 2012. Numerical modeling of seafloor interaction with steel catenary riser. Texas A&M University.
  • Yuan Y, Zheng M, Xue H, Duan Z, Tang W. 2022. Fatigue analysis of a steel catenary riser at touchdown zone with seabed resistance and hydrodynamic forces. Ocean Eng. 244:110446. doi:10.1016/j.oceaneng.2021.110446.
  • Zargar E, Kimiaei M, Randolph M. 2019. A new hysteretic seabed model for riser-soil interaction. Mar Struct. 64:360–378. doi:10.1016/j.marstruc.2018.08.002.
  • Zhang ZG, Shen AX, Zhang CP, Pan YT, Wu ZT. 2021. Analytical solution to initial intrusion static equilibrium of steel catenary riser in touchdown zone on seabed based on nonlinear Pasternak foundation model. Yantu Lixue/Rock Soil Mech. 42(9):2355–2374. doi:10.16285/j.rsm.2021.0295.
  • Zhao L, Wang D, Tian Y. 2020. Finite element modelling for as-laid embedment of pipeline in clayey sediments. Ocean Eng. 217:107963. doi:10.1016/j.oceaneng.2020.107963.
  • Zhao L, Zhou Z, Wang D, Chen L. 2021. Numerical modeling approach for steel catenary riser behavior at touchdown zone. J Geotech Geoenvironmental Eng. 147(6):04021033. doi:10.1061/(asce)gt.1943-5606.0002510.
  • Zhu B, Dai J, Kong D. 2020. Modelling T-bar penetration in soft clay using large-displacement sequential limit analysis. Geotechnique. 70(2):173–180. doi:10.1680/jgeot.18.P.160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.