2,612
Views
19
CrossRef citations to date
0
Altmetric
Science

A geomorphic assessment to inform strategic stream restoration planning in the Middle Fork John Day Watershed, Oregon, USA

, , , , , & show all
Pages 369-381 | Received 05 May 2016, Accepted 28 Mar 2017, Published online: 20 Apr 2017

References

  • Baxter, C. V., & Hauer, F. R. (2000). Geomorphololgy, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences, 57, 1470–1481. doi:10.1139/f00-056
  • Bean, J. R., Wilcox, A. C., Woessner, W. W., & Muhlfeld, C. C. (2014). Multiscale hydrogeomorphic influences on bull trout (Salvelinus confluentus) spawning habitat. Canadian Journal of Fisheries and Aquatic Sciences, 72(4), 17. doi:10.1139/cjfas-2013-0534
  • Beechie, T., & Imaki, H. (2014). Predicting natural channel patterns based on landscape and geomorphic controls in the Columbia River basin, USA. Water Resources Research, 50, 39–57. doi:10.1002/2013WR013629
  • Beechie, T., Pess, G., Roni, P., & Giannico, G. (2008). Setting river restoration priorities: A review of approaches and a general protocol for identifying and prioritizing actions. North American Journal of Fisheries Management, 28, 891–905. doi:10.1577/M06-174.1
  • Beechie, T., Sear, D. A., Olden, J. D., Pess, G. R., Buffington, J. M., Moir, H., … Pollock, M. M. (2010). Process-based principles for river restoration. Bioscience, 60(3), 209–222. doi:10.1525/bio.2010.60.3.7
  • Beechie, T. J., & Sibley, T. H. (1997). Relationships between channel characteristics, woody debris, and fish habitat in northwestern Washington streams. Transactions of the American Fisheries Society, 126, 217–229. doi:10.1577/1548-8659(1997)126<0217:RBCCWD>2.3.CO;2
  • Bennett, S., Pess, G., Bouwes, N., Roni, P., Bilbly, R. E., Gallagher, S. P., … Greene, C. (2016). Progress and challenges of testing the effectiveness of stream restoration in the Pacific Northwest using Intensively Monitored Watersheds. Fisheries, 41(2), 92–103. doi:10.1080/03632415.2015.1127805
  • Beyer, H. L. (2012). Geospatial modelling environment (Version 0.7.2.1) (software) [software]. Retrieved from http://www.spatialecology.com/gme
  • Blanchard, M. R. (2015). Using network models to predict steelhead abundance Middle Fork John Day, Oregon (Masters of science masters). Utah State University, Logan, UT.
  • Box, J. B., Howard, J., Wolf, D., O Brien, C., Nez, D., & Close, D. (2006). Freshwater mussels (Bivalvia: Unionoida) of the Umatilla and Middle Fork John Day rivers in eastern Oregon. Northwest Science, 80(2), 95–107.
  • Brierley, G., & Fryirs, K. (2005). Geomorphology and river management: Applications of the River Styles Framework. Victoria: Blackwell Publishing.
  • Brierley, G., Fryirs, K., Outhet, D., & Massey, C. (2002). Application of the River Styles Framework as a basis for river management in New South Wales, Australia. Applied Geography, 22(1), 31. doi:10.1016/S0143-6228(01)00016-9
  • Buffington, J. M., & Montgomery, D. R. (1999). A procedure for classifying textural facies in gravel-bed rivers. Water Resources Research, 35(6), 1903–1914. doi:10.1029/1999WR900041
  • Buffington, J. M., & Montgomery, D. R. (2013). Geomorphic classification of rivers. Treatise on Geomorphology, 9, 730–767. Elsevier. doi: 10.1016/B978-0-12-374739-6.00263-3
  • Butcher, D., Crown, J., Brannan, K., Kishida, K., & Hubler, S. (2010). John Day River basin Total Maximum Daily Load (TMDL) and Water Quality Management Plan (WQMP). Portland, OR: Oregon Department of Environmental Quality. DEQ 10-WQ-025.
  • Church, M. (1992). Channel morphology and typology. In P. Callow & G. E. Petts (Eds.), The rivers handbook (pp. 126–143). Oxford: Blackwell.
  • Columbia Habitat Monitoring Program (CHaMP). (2012). Scientific protocol for salmonid habitat surveys within the Columbia Habitat Monitoring Program. Wauconda, WA. Retrieved from http://champmonitoring.org/Program/RetreiveProgramDocumentFile/1/Protocol%20Documents/1113376526
  • Demarchi, L., Bizzi, S., & Piégay, H. (2016). Hierarchical object-based mapping of riverscape units and in-stream mesohabitats using LiDAR and VHR imagery. Remote Sensing, 8(2), 97. doi:10.3390/rs8020097
  • Dietrich, J. T. (2014). Applications of structure-from-motion photogrammetry to fluvial geomorphology (PhD). University of Oregon, Eugene, OR.
  • Dietrich, J. T. (2016). Riverscape mapping with helicopter-based structure-from-motion photogrammetry. Geomorphology, 252, 144–157. doi:10.1016/j.geomorph.2015.05.008
  • Fausch, K. D., Torgersen, C. E., Baxter, C. V., & Li, H. W. (2002). Landscapes to riverscapes: Bridging the gap between research and conservation of stream fishes. Bioscience, 52(6), 483–498. doi:10.1641/0006-3568(2002)052[0483:ltrbtg]2.0.co;2
  • Feldhaus, J. W., Heppell, S. A., Hiram, L., & Mesa, M. G. (2010). A physiological approach to quantifying thermal habitat quality for redband rainbow trout (Oncorhynchus mykiss gairdneri) in the South Fork John Day River, Oregon. Environmental Biology of Fishes, 87, 277–290. doi: 10.1007/s10641-010-9580-6
  • Frissell, C. A., & Nawa, R. K. (1992). Incidence and causes of physical failure of artificial habitat structures in streams of Western Oregon and Washington. North American Journal of Fisheries Management, 12(1), 15. doi:10.1577/1548-8675(1992)012<0182:IACOPF>2.3.CO;2
  • Fryirs, K. (2015). Developing and using geomorphic condition assessments for river rehabilitation planning, implementation and monitoring. WIREs Water, 2(6), 649–667. doi:10.1002/wat2.1100
  • Fryirs, K., Wheaton, J., & Brierley, G. J. (2016a). An approach for measuring confinement and assessing the influence of valley setting on river forms and processes. Earth Surface Processes and Landforms. doi:10.1002/esp.3893
  • Fryirs, K. A., & Brierley, G. J. (2016). Assessing the geomorphic recovery potential of rivers: forecasting future trajectories of adjustment for use in management. Wiley Interdisciplinary Reviews: Water, 3(5), 727–748. doi:10.1002/wat2.1158
  • Fryirs, K. A., Wheaton, J. M., & Brierley, G. (2016b). An approach for measuring confinement and assessing the influence of valley setting on river forms and processes. Earth Surface Processes and Landforms. doi:10.1002/esp.3893
  • Gilbert, J. T., Macfarlane, W. W., & Wheaton, J. M. (2016). The Valley Bottom Extraction Tool (V-BET): A GIS tool for delineating valley bottoms across entire drainage networks. Computers & Geosciences, 97, 1–14. doi:10.1016/j.cageo.2016.07.014
  • Harris, D. D., & Hubbard, L. E. (1982). Magnitude and frequency of floods in eastern Oregon. Retrieved from USGS Water-Resources Investigations Report.
  • Hegeman, E. E., Miller, S. W., & Mock, K. E. (2014). Modeling freshwater mussel distribution in relation to biotic and abiotic habitat variables at multiple spatial scales. Canadian Journal of Fisheries and Aquatic Sciences, 71(10), 1483–1497. doi: 10.1139/cjfas-2014-0110
  • Holburn, E., Piety, L. A., Lyon, E. W., McAffee, R., & Callahan, D. (2008). Middle Fork and Upper John Day Tributary Assessments, Grant County, Oregon. Boise, Idaho: American Society of Civil Engineers.
  • Holburn, E., Turner, T., Piety, L., & Klinger, R. (2009). Habitat restoration on the Middle Fork John Day River. World environmental and water resources congress 2009: Great Rivers (pp. 1–12). Kansas City, MO: American Society of Civil Engineers.
  • ISEMP/CHaMP. (2015). Combined integrated and status monitoring program and Columbia habitat monitoring program calendar year 2014 annual report. Prepared by ISEMP and CHaMP for the Bonneville Power Administration. B. P. Administration.
  • Kasprak, A., Hough-Snee, N., Beechie, T., Bouwes, N., Brierley, G., Camp, R., … Wheaton, J. (2016). The blurred line between form and process: A comparison of stream channel classification frameworks. PLoS One, 11(3), e0150293. doi:10.1371/journal.pone.0150293
  • Kasprak, A., & Wheaton, J. (2012). Development of a rapid geomorphic assessment procedure for streams in the John Day River Watershed, Oregon. Logan, UT: Ecogeomorphology & Topographic Analysis Lab for Eco Logical Research, Inc.
  • Kellerhals, R., Church, M., & Bray, D. I. (1976). Classification and analysis of river processes. Journal of the Hydraulics Division-ASCE, 102(7), 813–829.
  • Klingeman, P., Bogavelli, V., Coles, D., & Wright, M. (2002). Streamflow evaluations for river restoration planning and design. Retrieved from http://streamflow.engr.oregonstate.edu/index.htm
  • Mann, C. C., & Plummer, M. L. (2000). Can science rescue salmon? Science, 289(5480), 716–719. doi:10.1126/science.289.5480.716
  • May, C., Roering, J., Eaton, L. S., & Burnett, K. M. (2013). Controls on valley width in mountainous landscapes: The role of landsliding and implications for salmonid habitat. Geology, 41(4), 503–506. doi:10.1130/g33979.1
  • May, C., Roering, J., Snow, K., Griswold, K., & Gresswell, R. (2017). The waterfall paradox: How knickpoints disconnect hillslope and channel processes, isolating salmonid populations in ideal habitats. Geomorphology, 277, 228–236. doi:10.1016/j.geomorph.2016.03.029
  • McDowell, P. F. (2001). Spatial variations in channel morphology at segment and reach scales, Middle Fork John Day River, northeastern Oregon. In J. M. Dorava, D. R. Montgomery, B. B. Palcasak, & F. A. Fitzpatrick (Eds.), Geomorphic processes and riverine habitat ( Vol. water science and application volume 4; pp. 159–172). Washington, D.C.: American Geophysical Union.
  • McHugh, P., Saunders, C., Bouwes, N., Wall, E., Bangen, S., Wheaton, J., … Jordan, C. (in press). Linking models across scales to assess the viability and restoration potential of a threatened population of steelhead (Oncorhynchus mykiss) in the Middle Fork John Day River, Oregon, USA. Ecological Modelling.
  • McNyset, K., Volk, C., & Jordan, C. (2015). Developing an effective model for predicting spatially and temporally continuous stream temperatures from remotely sensed land surface temperatures. Water, 7(12), 6827–6846. doi:10.3390/w7126660
  • Mock, K. E., Box, J. C. B., Chong, J. P., Howard, J. K., Nez, D. A., Wolf, D., & Gardner, R. S. (2010). Genetic structuring in the freshwater mussel Anodonta corresponds with major hydrologic basins in the western United States. Molecular Ecology, 19(3), 569–591. doi:10.1111/j.1365-294X.2009.04468.x
  • Montgomery, D. R. (2004). Geology, geomorphology, and the restoration ecology of salmon. GSA Today, 14(11), 4–12. doi:10.1130/1052-5173(2004)014<4:GGATRE>2.0.CO;2
  • Montgomery, D. R., & Buffington, J. M. (1997). Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 109(5), 596–611. doi:10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2
  • NMFS. (2008). Endangered Species Act – Section 7 Consultation Biological Opinion and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Consultation: Consultation on Remand for Operation of the Federal Columbia River Power System, 11 Bureau of Reclamation Projects in the Columbia Basin and ESA Section 10(a)(1)(A) Permit for Juvenile Fish Transportation Program. In N. M. F. Service (Ed.). Portland, Oregon: National Marine Fisheries Service.
  • NOAA. (2013). Pacific salmonids: Major threats and impacts. Retrieved from http://www.nmfs.noaa.gov/pr/species/fish/salmon.htm
  • Notebaert, B., & Piégay, H. (2013). Multi-scale factors controlling the pattern of floodplain width at a network scale: The case of the Rhône basin, France. Geomorphology, 200, 155–171. doi:10.1016/j.geomorph.2013.03.014
  • O’Brien, G. R., & Wheaton, J. M. (2015). River Styles report for the Middle Fork John Day Watershed, Oregon – example report for exploring leveraging the River Styles Framework in tributary habitat management for the Columbia River Basin. Logan, UT: Ecogeomorphology and Topographic Analysis Lab.
  • O’Brien, G. R., Wheaton, J. M., & Bouwes, N. (2015). Synthesis & recommendations from Middle Fork John Day River Styles – leveraging the River Styles Framework in tributary habitat management for the Columbia River Basin. Logan, UT: Fluvial Habitats Center, Utah State University.
  • Reclamation, U. S. B. o. (2010). Oxbow conservation area reach assessment, Middle Fork John Day River, Grant County, Oregon. Boise, Idaho: Pacific Northwest Regional Office.
  • Reclamation, U. S. B. o. (2008). Middle Fork and Upper John Day River tributary assessments Grant County, Oregon. Boise, ID: Pacific Northwest Regional Office.
  • Ries, KG,III. (2006). The national streamflow statistics program: A computer program for estimating streamflow statistics for ungaged sites. Reston, Virginia: U. S. G. Survey. Retrieved from U.S. Geological Survey Techniques and Methods Report TM Book 4, Chapter A6.
  • Rosenfeld, J., & Hatfield, T. (2006). Information needs for assessing critical habitat of freshwater fish. Canadian Journal of Fisheries and Aquatic Sciences, 63, 683–698. doi:10.1139/f05-242
  • Rucklehaus, M. H., Levin, P., Johnson, J. B., & Kareiva, P. M. (2002). The Pacific salmon wars: What science brings to the challenge of recovering species. Annual Review of Ecology and Systematics, 33(Annual Reviews), 665–706. doi:10.1146/annurev.ecolsys.33.010802.150504
  • Schumm, S. A. (1977). The fluvial system. New York, NY: Wiley.
  • Seaber, P. R., Kapinos, F. P., & Knapp, G. L. (1987). Hydrologic unit maps. (2294). United States Government Printing Office.
  • Torgersen, C. E., Price, D. M., Li, H. W., & McIntosh, B. A. (1999). Multiscale thermal refugia and stream habitat associations of Chinook salmon in northeastern Oregon. Ecological Applications, 9(1), 301–319. doi:10.1890/1051-0761(1999)009[0301:MTRASH]2.0.CO;2
  • USGS. (1999). National Elevation Dataset. Retrieved from http://ned.usgs.gov/
  • USGS. (2007). National Hydrography Dataset. Retrieved from http://nhd.usgs.gov/
  • Walker, G. W., & MacLeod, N. S. (Cartographer). (1991). Geologic map of Oregon. Retrieved from http://mrdata.usgs.gov/sgmc/or.html
  • Wall, C. E., Bouwes, N., Wheaton, J. M., Saunders, W. C., & Bennett, S. N. (2015). Net rate of energy intake predicts reach-level steelhead (Oncorhynchus mykiss) densities in diverse basins from a large monitoring program. Canadian Journal of Fisheries and Aquatic Sciences, 1–11. doi:10.1139/cjfas-2015-0290
  • Wheaton, J., Bouwes, N., McHugh, P., Saunders, W. C., Bangen, S. G., Bailey, P. E., … Jordan, C. (2017). Upscaling site-scale ecohydraulic models to inform salmonid population-level life cycle modelling and restoration actions – lessons from the Columbia River Basin. Earth Surface Processes and Landforms. doi:10.1002/esp.4137
  • Wheaton, J. M., Brasington, J., Darby, S. E., Merz, J., Pasternack, G. B., Sear, D., & Vericat, D. (2010). Linking geomorphic changes to salmonid habitat at a scale relevant to fish. River Research and Applications, 26(4), 469–486. doi:10.1002/rra.1305
  • Wheaton, J. M., Fryirs, K. A., Brierley, G. J., Bangen, S. G., Bouwes, N., & O’Brien, G. R. (2015). Geomorphic mapping and taxonomy of fluvial landforms. Geomorphology, 248, 273–295. doi:10.1016/j.geomorph.2015.07.010
  • White, S. M., Justice, C., Kelsey, D. A., McCullough, D. A., & Smith†, T. (2017). Legacies of stream channel modification revealed using general land office surveys, with implications for water temperature and aquatic life. Elementa Science of the Anthropocene, 5(3). doi:10.1525/journal.elementa.192
  • Wohl, E., & Merritt, D. M. (2008). Reach-scale channel geometry of mountain streams. Geomorphology, 93(3–4), 168–185. doi:10.1016/j.geomorph.2007.02.014
  • Wolman, M. G., & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. Journal of Geology, 68, 54–74. doi: 10.1086/626637
  • Worthy, M. (2005). High-resolution total stream power estimates for the Cotter River, Namadgi National park, Australian Capital Territory. In I. C. Roach (Ed.), Regolith 2005 – ten years of the centre for resource and environment studies (pp. 338–343). Canberra: Australian National University.