1,168
Views
9
CrossRef citations to date
0
Altmetric
Science

Gaussian simulation of nitrate concentration distribution in the Zagreb aquifer

, &
Pages 727-732 | Received 10 Feb 2017, Accepted 10 Jul 2017, Published online: 28 Jul 2017

References

  • Almasri, M. N. (2003). Optimal management of nitrate contamination of ground water (PhD Dissertation). Utah State University, Logan, Utah, 229 p.
  • Almasri, M. N. (2007). Nitrate contamination of groundwater: A conceptual management framework. Environmental Impact Assessment Review, 27, 220–242. doi: 10.1016/j.eiar.2006.11.002
  • Bačani, A., Posavec, K., & Parlov, J. (2010, September 12–17). Groundwater quantity in the Zagreb aquifer. In A. Zuber, J. Kania, & E. Kmiecik (Eds.), XXXVIII IAH Congress groundwater quality sustainability (pp. 87–92). Krakow: University of Silesia Press.
  • Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B (Methodological), 2, 211–252.
  • Chowdary, V. M., Rao, N. H., & Sarma, P. B. S. (2005). Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects. Agricultural Water Management, 75, 194–225. doi: 10.1016/j.agwat.2004.12.013
  • Cvetković, M. (2016). Modelling of maturation, expulsion and accumulation of bacterial methane within Ravneš Member (Pliocene age), Croatia onshore. Open Geosciences, 8(2), 5–13. doi: 10.1515/geo-2016-0002
  • Damayanti, M. C., & Hicks, P. J. (1996). A geostatistical study of a pilot area in the Griffithsvile oil field. Society of Petroleum Engineers, 37332, 93–106.
  • Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical Software Library and user's guide (2nd ed.). New York: Oxford University Press, 369 p.
  • Hand, J. L., Yang, C.-T., & Moritz, A. L. (1994). Ability of geostatistical simulations to reproduce geology: A critical evaluation. Society of Petroleum Engineers, 28414, 533–545.
  • Hernitz, Z., Kovačević, S., Velić, J., & Urli, M. (1981). Primjer kompleksnih geološko-geofizičkih istraživanja kvartarnih naslaga u okolici Prevlake [ An example of complex geological and geophysical explorations of Wuaternary deposits in the surroundings of Prevlaka]. Geološki Vjesnik, 33, 11–34, Zagreb.
  • Horváth, J., Borka, S., & Geiger, J. (2017). Cluster defined sedimentary elements of deep-water clastic depositional systems and their 3D spatial visualization using parametrization: A case study from the Pannonian-basin. Geologia Croatica, 70, 73–78. doi: 10.4154/gc.2017.06
  • Hosono, T., Tokunaga, T., Kagabu, M., Nakata, H., Orishikida, T., Lin, I., & Shimada, J. (2013). The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Research, 47, 2661–2675. doi: 10.1016/j.watres.2013.02.020
  • Jakab, N. (in press). Stochastic modelling in geology: Determining the sufficient number of models. Central European Geology. doi: 10.1556/24.60.2017.005
  • Kovač, Z., Nakić, Z., & Pavlić, K. (2017). Influence of groundwater quality indicators on nitrate concentrations in the Zagreb aquifer system. Geologia Croatica, 70(2), 93–103. doi: 10.4154/gc.2017.08
  • Kovač, Z., Pavlić, K., & Nakić, Z. (2016). Influence of dissolved oxygen on nitrates concentration in Zagreb aquifer. 8th Croatian-Hungarian and 19th Hungarian Geomathematical Congress, Geomathematics – present and future of geological modelling, Croatian Geological Society, Trakošćan, pp. 89–96.
  • Lake, I. R., Lovett, A. A., Hiscock, K. M., Betson, M., Foley, A., Sunnenberg, G., … Fletcher, S. (2003). Evaluating factors influencing groundwater vulnerability to nitrate pollution: Developing the potential of GIS. Journal of Environmental Management, 68, 315–328. doi: 10.1016/S0301-4797(03)00095-1
  • Larva, O., Marković, T., & Brkić, Ž. (2010). Groundwater hydrochemistry of the quaternary alluvial aquifer in Varaždin region – Croatia. XXXVIII IAH Congress (ISSN: 0208-6336), Groundwater Quality Sustainability, Krakow, 493–500.
  • Li, S. L., Liu, C. Q., Lang, Y. C., Zhao, Z. Q., & Zhou, Z. H. (2010). Tracing the sources of nitrate in karstic groundwater in Zunyi, Southwest China: A combined nitrogen isotope and water chemistry approach. Environmental Earth Sciences, 60, 1415–1423. doi: 10.1007/s12665-009-0277-0
  • Liu, A., Ming, J., & Ankumah, R. O. (2005). Nitrate contamination in private wells in rural Alabama, United States. Science of the Total Environment, 346, 112–120. doi: 10.1016/j.scitotenv.2004.11.019
  • Marković, T., Brkić, Ž, & Larva, O. (2013). Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia. Science of the Total Environment 458–460, 508–516. doi: 10.1016/j.scitotenv.2013.04.013
  • Mkandawire, T. (2008). Quality of groundwater from shallow wells of selected villages in Blantyre District, Malawi. Physics and Chemistry of the Earth, 33(8–13), 807–811. doi: 10.1016/j.pce.2008.06.023
  • Nakić, Z., Posavec, K., Parlov, J., & Bačani, A. (2011). Development of the conceptual model of the Zagreb aquifer system. The geology in digital age. Proceedings of the 17th Meeting of the Association of European Geological Societies, MAEGS 17/Banjac, Nenad (ur.), Serbian Geological Society, Belgrade, pp. 169–174.
  • Nakić, Z., Ružičić, S., Posavec, K., Mileusnić, M., Parlov, J., Bačani, A., & Durn, G. (2013). Conceptual model for groundwater status and risk assessment - case study of the Zagreb aquifer system. Geologia Croatica, 66(1), 55–76. doi: 10.4154/GC.2013.05
  • Novak Zelenika, K., Cvetković, M., Malvić, T., Velić, J., & Sremac, J. (2013). Sequential indicator simulations maps of porosity, depth and thickness of Miocene clastic sediments in the Kloštar Field, Northern Croatia. Journal of Maps, 9(4), 550–557. doi: 10.1080/17445647.2013.829410
  • Novak-Zelenika, K., Vidaček, R., Ilijaš, T., & Pavić, P. (2017). Application of deterministic and stochastic geostatistical methods in petrophysical modelling – a case study of Upper Pannonian reservoir in Sava depression. Geologia Croatica, 70, 105–114. doi: 10.4154/gc.2017.10
  • Peña-Haro, S., Pulido-Velazquez, M., & Sahuquillo, A. (2009). A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture. Journal of Hydrology, 373, 193–203. doi: 10.1016/j.jhydrol.2009.04.024
  • Posavec, K. (2006). Identifikacija i prognoza minimalnih razina podzemne vode zagrebačkoga aluvijalnog vodonosnika modelima recesijskih krivulja [ Identification and prediction of minimum ground water levels of Zagreb alluvial aquifer using recession curve models] (PhD dissertation). University of Zagreb, Zagreb, Croatia, 89 p.
  • Ružičić, S., Mileusnić, M., & Posavec, K. (2012). Building conceptual and mathematical model for Water flow and solute transport in the unsaturated zone at Kosnica Site. Rudarsko-geološko-naftni zbornik (0353-4529), 25, 21–31.
  • Sahin, A., & Al-Salem, A. A. (2001). Stochastic modeling of porosity distribution in a multi-zonal Carbonate reservoir. Society of Petroleum Engineers, 68113, 1–11.
  • Sokač, A. (1978). Pleistocene ostracode fauna of the Pannonian Basin in Croatia. Palaeontologia Jugoslavica, 21, 1–51.
  • Sollitto, D., Romić, M., Castrignano, A., Romić, D., & Bakić, H. (2010). Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. Catena, 80, 182–194. doi: 10.1016/j.catena.2009.11.005
  • Velić, J., & Durn, G. (1993). Alternating lacustrine-marsh sedimentation and subaerial exposure phases during quaternary: Prečko, Zagreb, Croatia. Geologia Croatica, 46(1), 71–90.
  • Velić, J., & Saftić, B. (1991). Subsurface spreading and facies characteristics of middle Peistocene deposits between Zaprešić and Samobor. Geološki Vjesnik, 44, 69–82.
  • Velić, J., Saftić, B., & Malvić, T. (1999). Lithologic composition and stratigraphy of Quaternary sediments in the area of the “Jakuševec” waste depository (Zagreb, Northern Croatia). Geologia Croatica, 52(2), 119–130.