2,511
Views
31
CrossRef citations to date
0
Altmetric
Science

Historic flood events in NE Romania (post-1990)

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 787-798 | Received 24 Mar 2017, Accepted 20 Sep 2017, Published online: 06 Oct 2017

References

  • Adjim, H., Djedid, A., & Hamma, W. (2017). Urbanism, climate change and floods: Case of Tlemcen city in Algeria. Urbanism. Architecture. Constructions, 9(1), 71–80.
  • Astite, S. W., Medjerab, A., Belabid, N. E., El Mahmouhi, N., El Wartiti, M., & Kemmon, S. (2015). Cartography of flood hazard by overflowing rivers using hydraulic modeling and geographic information system: Oued El Harrach case, (North of Algeria). Revista de Teledetección, 44, 67–79. doi: 10.4995/raet.2015.3985
  • Balica, S., Dinh, Q., Popescu, I., Vo, T. Q., & Pham, D. Q. (2014). Flood impact in the Mekong Delta, Vietnam. Journal of Maps, 10(12), 257–268. doi: 10.1080/17445647.2013.859636
  • Banskota, A., Kayastha, N., Falkowski, M. J., Wulder, M. A., Froese, R. E., & White, J. C. (2014). Forest monitoring using Landsat time series data: A review. Canadian Journal of Remote Sensing, 40(5), 362–384. doi: 10.1080/07038992.2014.987376
  • Bhatt, C. M., Rao, G. S., Farooq, M., Manjusree, P., Shukla, A., Sharma, S. V., … Dadhwal, V. K. (2016). Satellite-based assessment of the catastrophic Jhelum floods of September 2014, Jammu & Kashmir, India. Geomatics, Natural Hazards and Risk, 7, 1–19. doi: 10.1080/19475705.2014.949877
  • Bonansea, M., Rodriguez, M. C., Pinotti, L., & Ferrero, S. (2015). Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sensing of Environment, 158, 28–41. doi: 10.1016/j.rse.2014.10.032
  • Brinke, W. B. M., Knoop, J., Muilwijk, H., & Ligtvoet, W. (2017). Social disruption by flooding, a European perspective. International Journal of Disaster Risk Reduction, 21, 312–322. doi: 10.1016/j.ijdrr.2017.01.011
  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+ and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893–903. doi: 10.1016/j.rse.2009.01.007
  • Chen, X., Vierling, L., & Deering, D. (2005). A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sensing of Environment, 98, 63–79. doi: 10.1016/j.rse.2005.05.021
  • Cojoc, G., Romanescu, G., & Tirnovan, A. (2015). Exceptional floods on a developed river. Case study for the Bistrita River from the Eastern Carpathians (Romania). Natural Hazards, 77(3), 1421–1451. doi: 10.1007/s11069-014-1439-2
  • Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Review ArticleDigital change detection methods in ecosystem monitoring: A review. International Journal of Remote Sensing, 25(9), 1565–1596. doi: 10.1080/0143116031000101675
  • Cutaia, L., Massacci, P., & Roselli, I. (2004). Analysis of Landsat 5 TM images for monitoring the state of restoration of abandoned quarries. International Journal of Surface Mining, Reclamation and Environment, 18(2), 122–134. doi: 10.1080/13895260412331295385
  • Ding, H., & Elmore, A. J. (2015). Spatio-temporal patterns in water surface temperature from Landsat time series data in the Chesapeake Bay, U.S.A. Remote Sensing of Environment, 168, 335–348. doi: 10.1016/j.rse.2015.07.009
  • Du, J., Feng, X., Wang, Z., Huang, Y. S., & Ramadan, E. (2002). The methods of extracting water information from spot image. Chinese Geographical Science, 12(1), 68–72. doi: 10.1007/s11769-002-0073-1
  • Du, Y., Teillet, P. M., & Cihlar, J. (2002). Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sensing of Environment, 82, 123–134. doi: 10.1016/S0034-4257(02)00029-9
  • Faccini, F., Luino, F., Sacchini, A., Turconi, L., & De Graff, J. (2015). Geohydrological hazards and urban development in the Mediterranean area: An example from genoa (Liguria, Italy). Natural Hazard and Earth System Science, 15, 2631–2652. doi: 10.5194/nhess-15-2631-2015
  • Gitas, I. Z., Polychronaki, A., Katagis, T., & Mallinis, G. (2008). Contribution of remote sensing to disaster management activities: A case study of the large fires in the Peloponnese, Greece. International Journal of Remote Sensing, 29(6), 1847–1853. doi: 10.1080/01431160701874553
  • Goetz, S. J., Gardiner, N., & Viers, J. H. (2008). Monitoring freshwater, estuarine and nearshore benthic ecosystems with multi-sensor remote sensing: An introduction to the special issue. Remote Sensing of Environment, 112, 3993–3995. doi: 10.1016/j.rse.2008.05.016
  • Hapciuc, O. E., Romanescu, G., Minea, I., Iosub, M., Enea, A., & Sandu, I. (2016). Flood susceptibility analysis of the cultural heritage in the Sucevita catchment (Romania). International Journal of Conservation Science, 7(2), 501–510.
  • Ireland, G., Volpi, M., & Petropoulos, G. P. (2015). Examining the capability of supervised machine learning classifiers in extracting flooded areas from landsat TM imagery: A case study from a Mediterranean flood. Remote Sensing, 7, 3372–3399. doi: 10.3390/rs70303372
  • Irish, R. R. (1998). Landsat 7 science data users handbook. Greenbelt, MD: Landsat Project Science Office-NASA’s Goddard Space Flight Center.
  • Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J., & Xiao, T. (2014). An automated method for extracting rivers and lakes from landsat imagery. Remote Sensing, 6, 5067–5089. doi: 10.3390/rs6065067
  • Kaufman, Y. J., Wald, A. E., Remer, L. A., Bo-Cai Gao, L. A., Rong-Rong Li, L. A., & Flynn, L. (1997). The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of Aerosol. IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1286–1298. doi: 10.1109/36.628795
  • Kaufman, Y. J. (1998). Atmospheric effect on spectral signature-measurements and corrections. IEEE Transactions on Geoscience and Remote Sensing, 26, 441–450. doi: 10.1109/36.3048
  • Kundzewicz, Z. W., Pińskwar, I., & Brakenridge, G. R. (2013). Large floods in Europe, 1985–2009. Hydrological Sciences Journal, 58(1), 1–7. doi: 10.1080/02626667.2012.745082
  • Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., … Zhang, X. (2013). A comparison of land surface water mapping using the Normalized Difference Water Index from TM ETM+ and ALI. Remote Sensing, 5, 5530–5549. doi: 10.3390/rs5115530
  • Lillesand, T. M., & Kiefer, R. W. (1994). Remote sensing and image interpretation. Toronto: John Wiley and Sons.
  • Lobo, F. L., Costa, M. P. F., & Novo, E. M. L. M. (2015). Time-series analysis of Landsat-MSS/TM/OLI images over Amazonian waters impacted by gold mining activities. Remote Sensing of Environment, 157, 170–184. doi: 10.1016/j.rse.2014.04.030
  • Magliulo, P., Bozzi, F., & Pignone, M. (2016). Assessing the planform changes of the Tammaro River (southern Italy) from 1870 to 1955 using a GIS-aided historical map analysis. Environmental Earth Sciences, 75(4), 257. doi: 10.1007/s12665-016-5266-5
  • Magliulo, P., & Cusano, A. (2016). Geomorphology of the Lower Calore River alluvial plain (Southern Italy). Journal of Maps, 12(5), 1119–1127. doi: 10.1080/17445647.2015.1132277
  • Mayer, R., Plank, C., Bohner, A., Kollarits, S., Corsini, A., Ronchetti, F., … Jindra, P. (2008). Monitor: Hazard monitoring for risk assessment and risk communication. Georisk, 2(4), 193–222. doi: 10.1080/17499510802506139
  • McFeeters, S. K. (1996). The use of normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425–1432. doi: 10.1080/01431169608948714
  • Miklín, J., & Hradecký, J. (2016). Confluence of the Morava and Dyje Rivers: A century of landscape changes in maps. Journal of Maps, 12(4), 630–638. doi: 10.1080/17445647.2015.1068714
  • Morris, N. (2008). Low-cost remote sensing and GIS for regional disaster risk reduction, north west Costa Rica. Journal of Maps, 4, 23–38. doi: 10.1080/jom.2008.9711032
  • Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmitha, J., … Ip, A. (2016). Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment, 174, 341–352. doi: 10.1016/j.rse.2015.11.003
  • NASA. (2011). Landsat 7 science data users handbook Landsat project science office at NASA’s Goddard Space Flight Center in Greenbelt, 186. Retrieved from http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf
  • Olariu, P., Obreja, F., & Obreja, I. (2009). Unele aspecte privind tranzitul de aluviuni din bazinul hidrografic Trotus si de pe sectorul inferior al raului Siret in timpul viiturilor exceptionale din anii 1991 si 2005 (In romanian). Analele Universitatii Stefan cel Mare Suceava, Geografie, XVIII, 93–104.
  • Otukei, J., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, S27–S31. doi: 10.1016/j.jag.2009.11.002
  • Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water, 6, 1515–1545. doi: 10.3390/w6061515
  • Petrisor, A. I., Petre, R., & Meita, V. (2016). Difficulties in achieving social sustainability in a Biosphere Reserve. International Journal of Conservation Science, 7(1), 123–136.
  • Radevski, I., & Gorin, S. (2017). Floodplain analysis for different return periods of river Vardar in Tikvesh Valley (Republic of Macedonia). Carpathian Journal of Earth and Environmental Sciences, 12(1), 179–187.
  • Romanescu, G., Hapciuc, O. E., Minea, I., & Iosub, M. (2017). Flood vulnerability assessment in the mountain-plateau transition zone. Case study for Marginea village (Romania). Journal of Flood Risk Management, doi: 10.1111/jfr3.12249
  • Romanescu, G., & Nistor, I. (2011). The effect of the July 2005 catastrophic inundations in the Siret River’s Lower Watershed, Romania. Natural Hazards, 57(2), 345–368. doi: 10.1007/s11069-010-9617-3
  • Romanescu, G., & Stoleriu, C. C. (2013a). An inter-basin backwater overflow (the Buhai Brook and the Ezer reservoir on the Jijia River, Romania). Hydrological Processes, 28(7), 3118–3131. doi: 10.1002/hyp.9851
  • Romanescu, G., & Stoleriu, C. C. (2013b). Causes and effects of the catastrophic flooding on the Siret River (Romania) in July-August 2008. Natural Hazards, 69, 1351–1367. doi: 10.1007/s11069-012-0525-6
  • Romanescu, G., & Stoleriu, C. C. (2017). Exceptional floods in the Prut basin, Romania, in the context of heavy rains in the summer of 2010. Natural Hazards and Earth System Sciences, 17, 381–396. doi: 10.5194/nhess-17-381-2017
  • Romanescu, G., Stoleriu, C. C., & Romanescu, A. M. (2011). Water reservoirs and the risk of accidental flood occurrence. Case study: Stanca–Costeşti reservoir and the historical floods of the Prut river in the period July–August 2008, Romania. Hydrological Processes, 25(13), 2056–2070. doi: 10.1002/hyp.7957
  • Romanescu, G., Zaharia, C., Sandu, A. V., & Juravle, D. T. (2015). The annual and multi-annual variation of the minimum discharge in the Miletin catchment (Romania). An important issue of water conservation. International Journal of Conservation Science, 6(4), 729–746.
  • Roy, D. P., Kovalskyy, V., Zhanga, H. K., Vermote, E. F., Yana, L., Kumar, S. S., & Egorova, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57–70. doi: 10.1016/j.rse.2015.12.024
  • Sakai, T., Hatta, S., Okumura, M., Hiyama, T., Yamaguchi, Y., & Inoue, G. (2015). Use of Landsat TM/ETM+ to monitor the spatial and temporal extent of spring breakup floods in the Lena River, Siberia. International Journal of Remote Sensing, 36(3), 719–733. doi: 10.1080/01431161.2014.995271
  • Sami, K., Mohsen, B. A., Afet, K., & Fouad, Z. (2013). Hydrological modeling using GIS for mapping flood zones and degree flood risk in zeuss-koutine basin (south of Tunisia). Journal of Environmental Protection, 4, 1409–1422. doi: 10.4236/jep.2013.412161
  • Sandholt, I., Nyborg, L., Fog, B., Lô, M., Bocoum, O., & Rasmussen, K. (2003). Remote sensing techniques for flood monitoring in the Senegal River Valley. Geografisk Tidsskrift - Danish Journal of Geography, 103, 71–81. doi: 10.1080/00167223.2003.10649481
  • Sanyal, J., & Lu, X. X. (2004). Application of remote sensing in flood management with special reference to monsoon Asia: A review. Natural Hazards, 33(2), 283–301. doi: 10.1023/B:NHAZ.0000037035.65105.95
  • Schott, J. (1997). Remote sensing – the image chain approach. New York, NY: Oxford University Press.
  • Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A. (2001). Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sensing of Environment, 75, 230–244. doi: 10.1016/S0034-4257(00)00169-3
  • Tebbs, E. J., Remedios, J. J., & Harper, D. M. (2013). Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sensing of Environment, 135, 92–106. doi: 10.1016/j.rse.2013.03.024
  • Teeuw, R. M., Mcwillian, N., Whiteside, M., & Zukowskyj, P. M. (2005). Geographical information sciences and fieldwork. London: Royal Geographical Society.
  • Thomas, R. F., Kingsford, R. T., Lu, Y., Cox, S. J., Sims, N. C., & Hunter, S. J. (2015). Mapping inundation in the heterogeneous floodplain wetlands of the Macquarie Marshes, using Landsat Thematic Mapper. Journal of Hydrology, 524, 194–213. doi: 10.1016/j.jhydrol.2015.02.029
  • Tulbure, M. G., Broicha, M., Stehman, S. V., & Kommareddy, A. (2016). Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sensing of Environment, 178, 142–157. doi: 10.1016/j.rse.2016.02.034
  • Van Alphen, J., Martini, F., Loat, R., Slomp, R., & Passchier, R. (2009). Flood risk mapping in Europe, experiences and best practices. Journal of Flood Risk Management, 2(4), 285–292. doi: 10.1111/j.1753-318X.2009.01045.x
  • Visser, F. (2014). Rapid mapping of urban development from historic Ordonance survey maps: An application for fluvial flood risk in Worcester. Journal of Maps, 10(3), 276–288. doi: 10.1080/17445647.2014.893847
  • Wang, Y., Colby, J. D., & Mulcahy, K. A. (2002). An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. International Journal of Remote Sensing, 23(18), 3681–3696. doi: 10.1080/01431160110114484
  • Wang, Y. (2004). Using Landsat 7 TM data acquired days after a flood event to delineate the maximum flood extent on a coastal floodplain. International Journal of Remote Sensing, 25(5), 959–974. doi: 10.1080/0143116031000150022
  • Xu, H. (2006). Modification of Normalized Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. doi: 10.1080/01431160600589179
  • Yang, Y., Liu, Y., Zhou, M., Zhang, S., Zhan, W., Sun, C., & Duan, Y. (2015). Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sensing of Environment, 171, 14–32. doi: 10.1016/j.rse.2015.10.005
  • Zhang, F., Tiyip, T., Kung, H., Johnson, V. C., Wang, J., & Nurmemet, I. (2016). Improved water extraction using Landsat TM/ETM+ images in Ebinur Lake, Xinjiang, China. Remote Sensing Applications: Society and Environment, 4, 109–118. doi: 10.1016/j.rsase.2016.08.001
  • Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsat 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159, 269–277. http://gis2.rowater.ro doi: 10.1016/j.rse.2014.12.014