3,444
Views
3
CrossRef citations to date
0
Altmetric
Articles

Geomorphology of the upper Mkhomazi River basin, KwaZulu-Natal, South Africa, with emphasis on late Pleistocene colluvial deposits

ORCID Icon, , , , ORCID Icon, , , & show all
Pages 5-16 | Received 09 Apr 2020, Accepted 29 Jun 2020, Published online: 14 Jul 2020

References

  • Adamiec, G., Bailey, R. M., Wang, X. L., & Wintle, A. G. (2008). The mechanism of thermally transferred optically stimulated luminescence in quartz. Journal of Physics D-Applied Physics, 41(13), 135503. https://doi.org/10.1088/0022-3727/41/13/135503
  • Bachofer, F., Quénéhervé, G., Hochschild, V., & Märker, M. (2015). Multisensorial topsoil mapping in the Semiarid Lake Manyara Region, Northern Tanzania. Remote Sensing, 7(8), 9563–9586. https://doi.org/10.3390/rs70809563
  • Bosino, A., Omran, A., & Maerker, M. (2019). Identification, characterisation and analysis of the Oltrepo Pavese calanchi in the Northern Apennines (Italy). Geomorphology, 340, 53–66. https://doi.org/10.1016/j.geomorph.2019.05.003
  • Botha, G. A. (1996). The geology and paleopedology of late Quaternary colluvial sediments in northern KwaZulu-Natal. Memoir, 83, Geological Survey of South Africa. 165 pp.
  • Botha, G. A., De Villiers, J. M., & Vogel, J. C. (1990). Cyclicity of erosion, colluvial sedimentation and paleosol formation in Quaternary hillslope deposition from northern Natal, South Africa. Palaeoecology Africa, 21, 195–210.
  • Botha, G. A., & Fedoroff, N. (1995). Palaeosols in late Quaternary colluvium, northern KwaZulu-Natal, South Africa. Journal of African Earth Science, and the Middle East, 21(2), 291–311. https://doi.org/10.1016/0899-5362(95)00072-2
  • Botha, G. A., & Partridge, T. C. (2000). Colluvial deposits. In T. C. Partridge, & R. R. Maud (Eds.), The Cenozoic of Southern Africa (pp. 88–99). Oxford University Press.
  • Botha, G. A., Temme, A. J. A. M., & Singh, R. G. (2016). Colluvial deposits and slope instability. In J. Knight & S. Grab (Eds.), Quaternary environmental change in Southern Africa: Physical and human dimensions (pp. 137–152). Cambridge University Press. doi:10.1017/CBO9781107295483.009.
  • Botha, G. A., Wintle, A. G., & Vogel, J. C. (1994). Episodic Late Quarternary palaeogully erosion in northern Kwazulu/Natal, South Africa. Catena, 23(3-4), 327–340. https://doi.org/10.1016/0341-8162(94)90076-0
  • Cama, M., Schillaci, C., Kropáček, J., Hochschild, V., Bosino, A., & Maerker M. (2020). A probabilistic assessment of soil erosion susceptibility in a head catchment of the Jemma Basin, Ethiopian Highlands. Geosciences 10(7), 248. http://doi.org/10.3390/geosciences10070248
  • Campobasso, C., Carton, A., Chelli, A., D’orefice, M., Dramis, F., Graciotti, R., Guida, D., Pambianchi, G., Peduto, F., & Pellegrini, L. (2018). Carta Geomorfologica d’Italia –1:50.000. Aggiornamento ed integrazioni delle linee guida della Carta Geomorfologica d’Italia alla scala 1:50.000. Roma. Quaderni serie III Volume 13 Fascicolo I. Servizio Geologico d’Italia – ISPRA; Associazione Italiana Di Geografia Fisica E Geomorfologia – AIGEO, Consiglio Nazionale Dei Geologi – CNG.
  • Catuneanu, O., & Elango, H. N. (2001). Tectonic control on fluvial styles: The Balfour Formation of the Karoo Basin, South Africa. Sedimentary Geology, 140(3-4), 291–313. https://doi.org/10.1016/S0037-0738(00)00190-1
  • Conforti, M., Aucelli, P. P., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazard, 56(3), 881–898. https://doi.org/10.1007/s11069-010-9598-2
  • Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., & Maerker, M. (2014). Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology, 204, 399–411. https://doi.org/10.1016/j.geomorph.2013.08.021
  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., & Böhner, J. (2015). System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development Discussions, 8(2), 2271–2312. https://doi.org/10.5194/gmdd-8-2271-2015
  • Dietrich, W. E., & Dorn, R. (1984). Significance of thick deposits of colluvium on hillslope: A case study involving the use of pol lin analysis in the coastal mountains of northern California. Journal of Geology, 92(2), 147–158. https://doi.org/10.1086/628845
  • Geological Survey. (1981). 1:250.000 geological series map. 2928 Drakensberg. Department of Minerals and Energy.
  • IUSS Working Group WRB. (2014). World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO.
  • Jacobs, Z., Wintle, A. G., Duller, G. A. T., Roberts, R. G., & Wadley, L. (2008). New ages for the post-Howiesons Poort, late and final Middle Stone Age at Sibudu, South Africa. Journal of Archaeological Science, 35(7), 1790–1807. https://doi.org/10.1016/j.jas.2007.11.028
  • King, L. (1949). The pediment landform: Some current problems. Geological Magazine, 86(4), 245–250. https://doi.org/10.1017/S0016756800074665
  • King, L. C., & Fair, T. J. D. (1944). Hillslopes and dongas. Transactions of the Geological Society of South Africa, XLVII, 2–4.
  • Kottek, M., Grieser, F., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
  • Krieger, G., Moreira, A., Fiedler, H., Hanjnesk, I., Werner, M., Younis, M., & Zink, M. (2007). TanDEM-X: A satellite formation for high-resolution SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 45(11), 3317–3341. https://doi.org/10.1109/TGRS.2007.900693
  • Kropáček, J., Schillaci, C., Salvini, R., & Märker, M. (2016). Assessment of gully erosion in the Upper Awash, Central Ethiopian highlands based on a comparison of archived aerial photographs and very high resolution satellite images. Geograria Fisica e Dinamamica Quaternaria, 39, 161–170. http://doi.org/10.4461/GFDQ.2016.39.15
  • Lyons, R., Tooth, S., & Duller, G. A. T. (2013). Chronology and controls of donga (gully) formation in the upper Blood River catchment, KwaZulu-Natal, South Africa: Evidence for a climatic driver of erosion. The Holocene, 23(12), 1875–1887. https://doi.org/10.1177/0959683613508157
  • Maerker, M., Schillaci, C., Melis, R. T., Kropáček, J., Bosino, A., Vilímek, V., Hochschild, V., Sommer, C., Altamura, F., & Mussi, M. (2019). Geomorphological processes, forms and features in the surroundings of the Melka Kunture Palaeolithic site, Ethiopia. Journal of Maps, 15(2), 797–806. https://doi.org/10.1080/17445647.2019.1669497
  • Mills, H. H. (1987). Variation in sedimentary properties of colluvium as a function of topographic setting, valley and ridge province. Virginia. Zeitschrift fur Geomorphologie, 31(3), 277–292.
  • National Geo-Spatial Information. (2016). 2929DA Himeville. 1:50000 topocadastral map.
  • Nel, W., & Sumner, P. (2008). Rainfall and temperature attributes on the Lesotho-Drakensberg escarpment edge, Southern Africa. Geografiska Annaler, 90(1), 97–108. https://doi.org/10.1111/j.1468-0459.2008.00337.x
  • Norman, N., & Whitfield, G. (2006). Geological journeys. A traveller’s guide to South Africa’s rocks and landforms. Struik Nature.
  • Partridge, T. C., Dollar, E. S. J., Moolman, J., & Dollar, L. H. (2010). The geomorphic provinces of South Africa, Lesotho and Swaziland: A physiographic subdivision for earth and environmental scientists. Transactions of the Royal Society of South Africa, 65(1), 1–47. https://doi.org/10.1080/00359191003652033
  • Pelacani, S., Maerker, M., & Rodolfi, G. (2009). Modelling the potential impact of groundwater dynamics on gully erosion and drainage basin evolution. In D. M. Ferrari, & A. R. Guiseppi (Eds.), Geomorphology and plate tectonics (pp. 1–18). Nova Science Publishers.
  • Poesen, J. W. (1996). Contribution of gully erosion to sediment production on cultivated lands and rangelands. IAHS, 236, 251–266.
  • Price Williams, D., Watson, A., & Goudie, A. S. (1982). Quarternary colluvial stratigraphy. Archaeological sequences and palaeonvironmental in Swaziland, southern KwaZulu-Natal, South Africa. Catena, 39, 11–31.
  • R Development Core Team. (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL http://www.R-project.org
  • Reneau, S. L., Dietrich, W. E., Rubin, M., Donahue, D. J., & Jull, A. J. T. (1989). Analysis of hillslope erosion rate using dated colluvial deposits. Journal of Geology, 97(1), 45–63. https://doi.org/10.1086/629280
  • Rienks, S. M., Botha, G. A., & Hughes, J. C. (2000). Some physical and chemical properties of sediments exposed in a gully (donga) in northern KwaZulu-Natal, South Africa and their relationship to the erodibility of the colluvial layers. Catena, 39(1), 11–31. https://doi.org/10.1016/S0341-8162(99)00082-X
  • Rutherford, B. S., Rubidge, B. S., & Hancox, P. J. (2015). Sedimentology and palaeontology of the Beufort Group in the Free State Province support a reciprocal foreland basin model for the Karoo Supergroup, South Africa. South African Journal of Geology, 118(4), 355–372. https://doi.org/10.2113/gssajg.118.4.355
  • Sidorchuk, A. (1999). Dynamic and static models of gully erosion. Catena, 37(3-4), 401–414. https://doi.org/10.1016/S0341-8162(99)00029-6
  • Sidorchuk, A., Maerker, M., Moretti, S., & Rodolfi, G. (2003). Gully erosion modelling and landscape response in the Mbuluzi River catchment of Swaziland. Catena, 50(2-4), 507–525. https://doi.org/10.1016/S0341-8162(02)00123-6
  • Smith, R. M. H., Erickson, P. A., & Botha, W. J. (1993). A review of the stratigraphy and sedimentary environments of the Karoo-aged basins of Southern Africa. Journal of African Earth Sciences, 16(1), 143–169. https://doi.org/10.1016/0899-5362(93)90164-L
  • Soil Classification Working Group. (1991). Soil classification – A taxonomic system for South Africa. Department of Agricultural Development.
  • Temme, A. J. A. M., Baartman, J. E. M., Botha, G. A., Veldkamp, A., Jongmans, A. G., & Wallinga, J. (2008). Climate control on late Pleistocene landscape evolution of the Okhombe valley, KwaZulu-natal, South Africa. Geomorphology, 99(1-4), 280–295. https://doi.org/10.1016/j.geomorph.2007.11.006
  • Turner, B. R. (1981). Revised stratigraphy of the Beaufort Group in the Southern Karoo Basin. Paleontologia Africana, 24, 87–98.
  • Wang, L., & Liu, H. (2006). An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science, 20(2), 193–213. https://doi.org/10.1080/13658810500433453
  • Watson, A., Price Williams, D., & Goudie, A. S. (1984). The paleoenvironmental interpretation of colluvial sediments and paleosols of the late Pleistocene hypotermal in South Africa. Paleogeography, Paleoclimatology, Paleoecology, 45(3-4), 225–249. https://doi.org/10.1016/0031-0182(84)90008-7
  • Wilson, J. P., & Gallant, J. C. (2000). Digital terrain analysis. In J. P. Wilson, & J. C. Gallant (Eds.), Terrain analysis: Principles and applications (pp. 1–27). J. Wiley.
  • Zakerinejad, R., & Maerker, M. (2014). Prediction of gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: A case study in the Mazayejan plain, southwest Iran. Geografia Fisica e Dinamica Quaternaria, 37(1), 67–76.
  • Zakerinejad, R., Omran, A., Hochschild, V., & Maerker, M. (2018). Assessment of gully erosion in relation to lithology in the southwestern Zagros mountains, Iran using aster data, gis and stochastic modeling. Geografia Fisica e Dinamica Quaternaria, 41, 95–104. http://doi.org/10.4461/GFDQ.2018.41.15
  • Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1), 47–56. https://doi.org/10.1002/esp.3290120107