1,667
Views
1
CrossRef citations to date
0
Altmetric
Science

Modelling soil erosion and runoff for a super typhoon event using PCRaster

Pages 879-889 | Received 13 Mar 2020, Accepted 20 Oct 2020, Published online: 12 Nov 2020

References

  • Alewell, C. , Borelli, P. , Meusburger, K. , & Panagos, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil and Water Conservation Research , 7 (3), 203–225. https://doi.org/10.1016/j.iswcr.2019.05.004
  • Bato, V. A. (1996). The relationship of earthworm population with some soil physical properties of Lipa soil series . University of the Philippines.
  • Bosch, D. D. , Arnold, J. G. , Allen, P. G. , Lim, K. , & Park, Y. S. (2017). Temporal variation in baseflow for the Little River experimental watershed in South Georgia, USA. Journal of Hydrology: Regional Studies , 10 , 110–121. https://doi.org/10.1016/j.ejrh.2017.02.002
  • Chen, X. , Zhang Z., C. , & & Shi, X. (2009). The impact of land use and land cover changes on soil moisture and hydraulic conductivity along the karst hillslopes of southwest China. Environmental Earth Sciences , 59 (4), 811–820. https://doi.org/10.1007/s12665-009-0077-6
  • Chow, V. T. (1959). Open-channel hydraulics . McGraw-Hill.
  • Gholami, V. , & Khaleghi, M. R. (2013). The impact of vegetation on the bank erosion (case study: The Haraz River). Soil & Water Research , 8 (4), 158–164. https://doi.org/10.17221/13/2012-SWR
  • Hillel, D. (2004). Introduction to environmental soil physics . Elsevier Science.
  • Karalis, S. , Katsios, I. , & Karymbalis, E. (2014). Development and testing of a Simple Soil Erosion Model. 1st International GEOMAPPLICA Conference, https://www.researchgate.net/publication/299741120_Development_and_testing_of_a_simple_soil_erosion_model
  • Lanuza, R. , & Paningbatan, J. E. (2010). Validation and sensitivity analysis of catchment runoff and erosion simulation technology (CREST): A GIS-assisted soil erosion model at watershed level. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2592&context=iemssconference
  • Liang, S. , Li, X. , & Wang, J. (2012). Advanced remote sensing . Academic Press Elsevier.
  • Lopez, M. G. , Wennerström, L. N. , & Seibert, J. (2015). Location and density of rain gauges for the estimation of spatial varying precipitation. Geografiska Annaler: Series A. Physical Geography , 97 (1), 167–179. https://doi.org/10.1111/geoa.12094
  • Merrit, W. S. , Letcher, R. A. , & Jakeman, A. J. (2003). A review of erosion and sediment transport models. Environment Modelling & Software , 18 (8-9), 761–799. https://doi.org/10.1016/S1364-8152(03)00078-1
  • Mishra, A. K. (2013). Effect of rain gauge density over the accuracy of rainfall: A case study over Bangalore, India. SpringerPlus , 2 (1), 311. https://doi.org/10.1186/2193-1801-2-311
  • Mukherjee, A. , Bhanja, S. N. , & Wada, Y. (2018). Groundwater depletion causing reduction of baseflow triggering Ganges River summer drying. Scientific Reports , 8 , 12049. https://doi.org/10.1038/s41598-018-30246-7
  • NASA . (2015). Koppu (NW Pacific). Retrieved January 10, 2020, from https://www.nasa.gov/feature/goddard/koppu-nw-pacific
  • NDRRMC . (2015). SitRep No. 22 re preparedness measures and effects of typhoon “Lando” (I.N. KOPPU). Retrieved January 20, 2020, from http://www.ndrrmc.gov.ph/attachments/article/2607/SitRep%20No.22%20re%20Preparedness%20Measures%20and%20Effects%20of%20Typhoon%20LANDO%20(I.N.%20KOPPU).pdf
  • Oudin, L. , Michel, C. , & Anctil, F. (2005). Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 1-Can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs? Journal of Hydrology , 303 (1-4), 275–289. https://doi.org/10.1016/j.jhydrol.2004.08.025
  • Pandey, A. , Himanshu, S. K. , Mishra, S. , & Vijay, S. P. (2016). Physically based soil erosion and sediment yield models revisited. Catena , 147 , 595–620. https://doi.org/10.1016/j.catena.2016.08.002
  • Paningbatan, Jr., E. P. (2001). Geographic information system-assisted dynamic modelling of soil erosion and hydrologic processes at a watershed scale. The Philippine Agricultural Scientist , 84 , 388–393.
  • Roose, E. (1996). Land husbandry – component and strategy (70 FAO Soils Bulletin). Food and Agriculture Oranization of the United Nations. http://www.fao.org/3/t1765e/t1765e00.htm#Contents
  • Rose, C. W. , & Freebairn, D. M. (1985). A new mathematical model of soil erosion and deposition processes with applications to field data. In E. Swaify , S. A. Moldenhauer , & A. Lo (Eds.), Soil erosion and conservation (pp. 549–557). Iowa: Soil Conservation Society of America.
  • Schmitz, O. , Karssenberg, D. , Van Deursen, W. P. , and Wesseling, A. , & G, C. (2009). Linking external components to a spatio-temporal modelling framework: Coupling MODFLOW and PCRaster. Environmental Modelling & Software , 24 (9), 1088–1099. https://doi.org/10.1016/j.envsoft.2009.02.018
  • Soil Science Society of America . (2019). Retrieved May 31, 2019, from Glossary of Soil Science Terms: https://www.soils.org/publications/soils-glossary#
  • Tomer, M. D. (2005). Watershed management. In H. Daniel (Ed.), Encyclopedia of soils in the environment (pp. 306–315). Elsevier Ltd.
  • World Meterorological Organization . (2008). Guide to Hydrological Practices volume I WMO-No. 168.
  • Zhang, Y. , Wei, H. , & Nearing, M. A. (2011). Effects of antecedent soil moisture on runoff modelling in small semiarid watersheds of southeastern Arizona. Hydrology and Earth System Sciences , 15 (10), 3171–3179. https://doi.org/10.5194/hess-15-3171-2011
  • Zöllmer, C. , Lippe, M. , Vien, D. T. , Dung, N. V. , Hilger, T. H. , & Cadisch, G. (2007). Development of a simple PCRaster-based model for rainfall-runoff assessment in the Northern Mountainous Region of Vietnam. http://www.tropentag.de/2007/abstracts/posters/393.pdf