2,538
Views
3
CrossRef citations to date
0
Altmetric
Science

Estimation of rainfall-induced surface runoff for the Assam region, India, using the GIS-based NRCS-CN method

ORCID Icon & ORCID Icon
Pages 428-440 | Received 02 Dec 2021, Accepted 26 Apr 2022, Published online: 16 May 2022

References

  • Abdessamed, D., & Abderrazak, B. (2019). Coupling HEC-RAS and HEC-HMS in rainfall–runoff modeling and evaluating floodplain inundation maps in arid environments: Case study of Ain sefra city. Ksour Mountain. SW of Algeria. Environmental Earth Sciences, 78(19), 1–17. https://doi.org/10.1007/s12665-019-8604-6
  • Agrawal, N., Gupta, L., & Dixit, J. (2021). Assessment of the socioeconomic vulnerability to seismic hazards in the national capital region of India using factor analysis. Sustainability, 13(17), 9652. https://doi.org/10.3390/su13179652
  • Ajmal, M., Waseem, M., Ahn, J. H., & Kim, T. W. (2016). Runoff estimation using the NRCS slope-adjusted curve number in mountainous watersheds. Journal of Irrigation and Drainage Engineering, 142(4), 04016002. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000998
  • Akbari, A., Daryabor, F., Abu Samah, A., & Shirmohammadi Aliakbarkhani, Z. (2021). Improving runoff estimation by raster-based natural resources conservation service-curve number adjustment for a new initial abstraction ratio in semi-arid climates. River Research and Applications, 37(9), 1333–1342. https://doi.org/10.1002/rra.3840
  • Al-Ghobari, H., Dewidar, A., & Alataway, A. (2020). Estimation of surface water runoff for a semi-arid area using RS and GIS-based SCS-CN method. Water, 12(7), 1924. https://doi.org/10.3390/w12071924
  • Bal, M., Dandpat, A. K., & Naik, B. (2021). Hydrological modeling with respect to impact of land-use and land-cover change on the runoff dynamics in budhabalanga river basing using ArcGIS and SWAT model. Remote Sensing Applications: Society and Environment, 23, 100527. https://doi.org/10.1016/j.rsase.2021.100527
  • Bera, D., Kumar, P., Siddiqui, A., & Majumdar, A. (2021). Assessing impact of urbanisation on surface runoff using vegetation-impervious surface-soil (VIS) fraction and NRCS curve number (CN) model. Modeling Earth Systems and Environment, 1–14. https://doi.org/10.1007/s40808-020-01079-z
  • Caloiero, T., Coscarelli, R., & Pellicone, G. (2020). A gridded database for the spatiotemporal analysis of rainfall in southern Italy (calabria region). Environmental Sciences Proceedings, 2(1), 6. https://doi.org/10.3390/environsciproc2020002006
  • Census of India. (2011). Census of India 2011 provisional population totals. Office of the Registrar General and Census Commissioner.
  • Chanu, S. N., Thomas, A., & Kumar, P. (2015). Estimation of curve number and runoff of a micro-watershed using soil conservation service curve number method. Journal of Soil & Water Conservation, 14(4), 317–325.
  • Deshmukh, D. S., Chaube, U. C., Hailu, A. E., Gudeta, D. A., & Kassa, M. T. (2013). Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope. Journal of Hydrology, 492, 89–101. https://doi.org/10.1016/j.jhydrol.2013.04.001
  • Devi, N. N., Sridharan, B., & Kuiry, S. N. (2019). Impact of urban sprawl on future flooding in chennai city, India. Journal of Hydrology, 574, 486–496. https://doi.org/10.1016/j.jhydrol.2019.04.041
  • Dixit, J., Raghukanth, S. T. G., & Dash, S. K. (2016). Spatial distribution of seismic site coefficients for Guwahati city. In N. Raju (Ed.), Geostatistical and geospatial approaches for the characterization of natural resources in the environment (pp. 533–537). Springer. https://doi.org/10.1007/978-3-319-18663-4_80
  • Ebrahimian, M., Nuruddin, A. A. B., Soom, M. A. B. M., Sood, A. M., & Neng, L. J. (2012). Runoff estimation in steep slope watershed with standard and slope-adjusted curve number methods. Polish Journal of Environmental Studies, 21(5), 1191–1202.
  • Ebrahimian, M., See, L. F., Ismail, M. H., & Malek, I. A. (2009). Application of natural resources conservation service–curve number method for runoff estimation with GIS in the kardeh watershed, Iran. European Journal of Scientific Research, 34(4), 575–590.
  • Farran, M. M., Elfeki, A., Elhag, M., & Chaabani, A. (2021). A comparative study of the estimation methods for NRCS curve number of natural arid basins and the impact on flash flood predications. Arabian Journal of Geosciences, 14(2), 1–23. https://doi.org/10.1007/s12517-020-06341-3
  • Farran, M. M., & Elfeki, A. M. (2020). Statistical analysis of NRCS curve number (NRCS-CN) in arid basins based on historical data. Arabian Journal of Geosciences, 13(1), 1–15. https://doi.org/10.1007/s12517-019-4993-9
  • Garaga, R., Chakraborty, S., Zhang, H., Gokhale, S., Xue, Q., & Kota, S. H. (2020). Influence of anthropogenic emissions on wet deposition of pollutants and rainwater acidity in guwahati, a UNESCO heritage city in northeast India. Atmospheric Research, 232, 104683. https://doi.org/10.1016/j.atmosres.2019.104683
  • Garg, V., Nikam, B. R., Thakur, P. K., & Aggarwal, S. P. (2013). Assessment of the effect of slope on runoff potential of a watershed using NRCS-CN method. International Journal of Hydrology Science and Technology, 3(2), 141–159. https://doi.org/10.1504/IJHST.2013.057626
  • Gupta, L., Agrawal, N., & Dixit, J. (2021). Spatial distribution of bedrock level peak ground acceleration in the national capital region of India using geographic information system. Geomatics, Natural Hazards and Risk, 12(1), 3287–3316. https://doi.org/10.1080/19475705.2021.2008022
  • Gupta, L., & Dixit, J. (2022). A GIS-based flood risk mapping of Assam, India, using the MCDA-AHP approach at the regional and administrative level. Geocarto International, 1–33. https://doi.org/10.1080/10106049.2022.2060329.
  • Hishe, S., Bewket, W., Nyssen, J., & Lyimo, J. (2020). Analysing past land use land cover change and CA-markov-based future modelling in the middle suluh valley, Northern Ethiopia. Geocarto International, 35(3), 225–255. https://doi.org/10.1080/10106049.2018.1516241
  • Huang, M., Gallichand, J., Wang, Z., & Goulet, M. (2006). A modification to the soil conservation service curve number method for steep slopes in the loess plateau of China. Hydrological Processes, 20(3), 579–589. https://doi.org/10.1002/hyp.5925
  • Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (July 2021). Global land use/land cover with sentinel 2 and deep learning. In 2021 IEEE international geoscience and remote sensing symposium IGARSS (pp. 4704–4707). IEEE.
  • Karunanidhi, D., Anand, B., Subramani, T., & Srinivasamoorthy, K. (2020). Rainfall-surface runoff estimation for the lower bhavani basin in south India using SCS-CN model and geospatial techniques. Environmental Earth Sciences, 79(13), 1–19. https://doi.org/10.1007/s12665-020-09079-z
  • Koneti, S., Sunkara, S. L., & Roy, P. S. (2018). Hydrological modeling with respect to impact of land-use and land-cover change on the runoff dynamics in Godavari river basin using the HEC-HMS model. ISPRS International Journal of Geo-Information, 7(6), 206. https://doi.org/10.3390/ijgi7060206
  • Kumar, P. S., Praveen, T. V., & Prasad, M. A. (2016). Rainfall–runoff modelling using modified NRCS-CN. RS and GIS–A Case Study. Journal of Engineering Research and Applications, 6, 54–58.
  • Kumar, R. (2021). Advances in remote sensing for natural resource monitoring, India. Advances in Remote Sensing for Natural Resource Monitoring, 389–404. https://doi.org/10.1002/9781119616016.ch19
  • Kumari, R., Mayoor, M., Mahapatra, S., Parhi, P. K., & Singh, H. P. (2019). Estimation of rainfall-runoff relationship and correlation of runoff with infiltration capacity and temperature over east singhbhum district of jharkhand. International Journal of Engineering and Advanced Technology, 9(2), 461. https://doi.org/10.35940/ijrte.B3216.129219
  • Lian, H., Yen, H., Huang, J. C., Feng, Q., Qin, L., Bashir, M. A., Wu, S., Zhu, A. X., Luo, J., Di, H., & Lei, Q. (2020). CN-China: Revised runoff curve number by using rainfall-runoff events data in China. Water Research, 177, 115767. https://doi.org/10.1016/j.watres.2020.115767
  • Mishra, S. K., Singh, V. P., & Singh, P. K. (2018). Revisiting the soil conservation service curve number method. In V. Singh, S. Yadav, & R. Yadav (Eds.), Hydrologic modeling. Water Science and Technology Library (Vol. 81, pp. 667–693). Springer. https://doi.org/10.1007/978-981-10-5801-1_46
  • Mohammad, F. S., & Adamowski, J. (2015). Interfacing the geographic information system, remote sensing, and the soil conservation service–curve number method to estimate curve number and runoff volume in the asir region of Saudi Arabia. Arabian Journal of Geosciences, 8(12), 11093–11105. https://doi.org/10.1007/s12517-015-1994-1
  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
  • Mukherjee, S., Bebermeier, W., & Schütt, B. (2018). An overview of the impacts of land use land cover changes (1980–2014) on urban water security of Kolkata. Land, 7(3), 91. https://doi.org/10.3390/land7030091
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • NRCS, U. (2004). National engineering handbook: Part 630—hydrology. USDA Soil Conservation Service.
  • NRCS, U. (2009). Chapter 7–hydrologic soil groups. In NRCS–National Engineering Handbook (NEH), Part 630–Hydrology (pp. 7–1). USDA NRCS.
  • Oliveira, P. T. S., Nearing, M. A., Hawkins, R. H., Stone, J. J., Rodrigues, D. B. B., Panachuki, E., & Wendland, E. (2016). Curve number estimation from Brazilian cerrado rainfall and runoff data. Journal of Soil and Water Conservation, 71(5), 420–429. https://doi.org/10.2489/jswc.71.5.420
  • Pal, I., & Singh, S. (2018). Disaster risk governance and response management for flood: A case study of Assam, India. In I. Pal & R. Shaw (Eds.), Disaster risk governance in India and cross cutting issues. Disaster risk reduction (pp. 143–163). Springer. https://doi.org/10.1007/978-981-10-3310-0_8
  • Pathak, S., Liu, M., Jato-Espino, D., & Zevenbergen, C. (2020). Social, economic and environmental assessment of urban sub-catchment flood risks using a multi-criteria approach: A case study in Mumbai city, India. Journal of Hydrology, 591, 125216. https://doi.org/10.1016/j.jhydrol.2020.125216
  • Pathan, H., & Joshi, G. S. (2019). Estimation of runoff using SCS-CN method and ArcGIS for karjan reservoir basin. Int. J. Appl. Eng. Res. 14(12), 2945–2951.
  • Patil, J. P., Sarangi, A., Singh, A. K., & Ahmad, T. (2008). Evaluation of modified CN methods for watershed runoff estimation using a GIS-based interface. Biosystems Engineering, 100(1), 137–146. https://doi.org/10.1016/j.biosystemseng.2008.02.001
  • Psomiadis, E., Soulis, K. X., & Efthimiou, N. (2020). Using SCS-CN and earth observation for the comparative assessment of the hydrological effect of gradual and abrupt spatiotemporal land cover changes. Water, 12(5), 1386. https://doi.org/10.3390/w12051386
  • Raghukanth, S. T. G., Dixit, J., & Dash, S. K. (2011). Ground motion for scenario earthquakes at guwahati city. Acta Geodaetica et Geophysica Hungarica, 46(3), 326–346. https://doi.org/10.1556/AGeod.46.2011.3.5
  • Rajbanshi, J. (2016). Estimation of runoff depth and volume using NRCS-CN method in konar catchment (jharkhand, India). Journal of Civil and Environmental Engineering, 6, 10.4172. https://doi.org/10.4172/2165-784X.1000236
  • Rao, K. N. (2020). A preliminary study of heavy metals pollution risk in water. Applied Water Science, 10(1), 1–16. https://doi.org/10.1007/s13201-019-1058-x
  • Rawat, K. S., & Singh, S. K. (2017). Estimation of surface runoff from semi-arid ungauged agricultural watershed using SCS-CN method and earth observation data sets. Water Conservation Science and Engineering, 1(4), 233–247. https://doi.org/10.1007/s41101-017-0016-4
  • Rawat, K. S., Singh, S. K., Singh, M. I., & Garg, B. L. (2019). Comparative evaluation of vertical accuracy of elevated points with ground control points from ASTERDEM and SRTMDEM with respect to CARTOSAT-1DEM. Remote Sensing Applications: Society and Environment, 13, 289–297. https://doi.org/10.1016/j.rsase.2018.11.005
  • Ritter, A., & Munoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45. https://doi.org/10.1016/j.jhydrol.2012.12.004
  • Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 08(04), 611. https://doi.org/10.4236/ijg.2017.84033
  • Sanz-Ramos, M., Martí-Cardona, B., Bladé, E., Seco, I., Amengual, A., Roux, H., & Romero, R. (2020). NRCS-CN estimation from onsite and remote sensing data for management of a reservoir in the eastern pyrenees. Journal of Hydrologic Engineering, 25(9), 05020022. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001979
  • Saran, S., Sterk, G., Aggarwal, S. P., & Dadhwal, V. K. (2021). Coupling remote sensing and GIS with KINEROS2 model for spatially distributed runoff modeling in a Himalayan watershed. Journal of the Indian Society of Remote Sensing, 49(5), 1121–1139. https://doi.org/10.1007/s12524-020-01295-1
  • Satheeshkumar, S., Venkateswaran, S., & Kannan, R. (2017). Rainfall–runoff estimation using SCS–CN and GIS approach in the pappiredipatti watershed of the vaniyar sub basin, south India. Modeling Earth Systems and Environment, 3(1), 1–8. https://doi.org/10.1007/s40808-017-0301-4
  • Satya, B. A., Shashi, M., & Pratap, D. (2020). Effect of temporal-based land use–land cover change pattern on rainfall runoff. In J. Ghosh & I. da Silva (Eds.), Applications of geomatics in civil engineering. Lecture notes in civil engineering (Vol. 33, pp. 175–182). Springer. https://doi.org/10.1007/978-981-13-7067-0_13
  • Sharma, A., Rajbongshi, G., Alam, S. T., Rabha, D., Chamuah, K., Henbi, L. N., & Borah, B. (2020). Molecular typing of dengue viruses circulating in Assam, India during 2016–2017. Journal of Vector Borne Diseases, 57(3), 249. https://doi.org/10.4103/0972-9062.311779
  • Shi, W., & Wang, N. (2020). An improved SCS-CN method incorporating slope, soil moisture, and storm duration factors for runoff prediction. Water, 12(5), 1335. https://doi.org/10.3390/w12051335
  • Subramanya, S. (2006). Engineering hydrology. Tata McGraw-Hill Publishing Company Limited. 147–148.
  • Taesiri, V., Pourkermani, M., Sorbi, A., Almasian, M., & Arian, M. (2020). Morphotectonics of Alborz province (Iran): A case study using GIS method. Geotectonics, 54(5), 691–704. https://doi.org/10.1134/S001685212005009X
  • Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sensing, 12(7), 1135. https://doi.org/10.3390/rs12071135
  • Tian, J., Liu, J., Wang, Y., Wang, W., Li, C., & Hu, C. (2020). A coupled atmospheric–hydrologic modeling system with variable grid sizes for rainfall–runoff simulation in semi-humid and semi-arid watersheds: How does the coupling scale affects the results? Hydrology and Earth System Sciences, 24(8), 3933–3949. https://doi.org/10.5194/hess-24-3933-2020
  • Tirkey, A. S., Pandey, A. C., & Nathawat, M. S. (2014). Use of high-resolution satellite data, GIS and NRCS-CN technique for the estimation of rainfall-induced runoff in small catchment of Jharkhand India. Geocarto International, 29(7), 778–791. https://doi.org/10.1080/10106049.2013.841773
  • USDA, S. (1985). Hydrology, national engineering handbook, section 4. US Department of Agriculture.
  • Verma, S., Verma, R. K., Mishra, S. K., Singh, A., & Jayaraj, G. K. (2017). A revisit of NRCS-CN inspired models coupled with RS and GIS for runoff estimation. Hydrological Sciences Journal, 62(12), 1891–1930. https://doi.org/10.1080/02626667.2017.1334166
  • Vignesh, K. S., Anandakumar, I., Ranjan, R., & Borah, D. (2021). Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques. Modeling Earth Systems and Environment, 7(2), 767–781. https://doi.org/10.1007/s40808-020-00997-2
  • Zhang, W. Y. (2019). Application of NRCS-CN method for estimation of watershed runoff and disaster risk. Geomatics, Natural Hazards and Risk, 10(1), 2220–2238. https://doi.org/10.1080/19475705.2019.1686431
  • Zhou, Y., Zhang, R., Wang, S., & Wang, F. (2018). Feature selection method based on high-resolution remote sensing images and the effect of sensitive features on classification accuracy. Sensors, 18(7), 2013. doi:10.3390/s18072013