1,464
Views
1
CrossRef citations to date
0
Altmetric
Science

Deep-Seated Gravitational Slope Deformations in Molise region (Italy): novel inventory and main geomorphological features

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2163198 | Received 08 Jul 2022, Accepted 21 Dec 2022, Published online: 24 Jan 2023

References

  • Agliardi, F., Crosta, G. B., & Frattini, P. (2012). Slow rock-slope deformation. In J. J. Clague, & D. Stead (Eds.), Landslides: Types, mechanisms and modeling (pp. 207–221). Cambridge University Press.
  • Amato, V., Aucelli, P. P. C., Bracone, V., Cesarano, M., & Rosskopf, C. M. (2017). Long-term landscape evolution of the Molise sector of the central-southern Apennines, Italy. Geologica Carphatica, 68(1), 29–42. https://doi.org/10.1515/geoca-2017-0003
  • Antonucci, A., De Corso, S., Di Luzio, E., Lenci, F., Sansonne, P., Scrocca, D., & Tozzi, M. (2000). La Montagnola di Frosolone ed il Matese settentrionale: nuovi dati sulla geologia molisana. Italian Journal of Geosciences, 119(3), 637–654.
  • APAT. (2007). Report on landslides in Italy: the IFFI project. Methodology, results and regional reports. APAT Reports, 78, 681.
  • Bianchi Fasani, G., Di Luzio, E., Esposito, C., Evans, S. G., & Scarascia Mugnozza, G. (2014). Quaternary, catastrophic rock avalanches in the central Apennines (Italy): Relationships with inherited tectonic features, gravity-driven deformations and the geodynamic frame. Geomorphology, 211, 22–42. https://doi.org/10.1016/j.geomorph.2013.12.027
  • Bianchi Fasani, G., Di Luzio, E., Esposito, C., Martino, S., & Scarascia-Mugnozza, G. (2011). Numerical modelling of Plio-quaternary slope evolution based on geological constraints: A case study from the caramanico valley (Central Apennines, Italy). Geological Society, London, Special Publications, 351(1), 201–214. https://doi.org/10.1144/SP351.1
  • Borgomeo, E., Hebditch, K. V., Whittaker, A. C., & Lonergan, L. (2014). Characterizing the spatial distribution, frequency and geomorphic controls on landslide occurrence, Molise, Italy. Geomorphology, 226, 148–161. https://doi.org/10.1016/j.geomorph.2014.08.004
  • Bozzano, F., Bretschneider, A., Esposito, C., Martino, S., Prestininzi, A., & Scarascia Mugnozza, G. (2013). Lateral spreading processes in mountain ranges: Insights from an analogue modelling experiment. Tectonophysics, 605, 88–95. https://doi.org/10.1016/j.tecto.2013.05.006
  • Cesarano, M., Pappone, G., Amato, V., Aucelli, P. P. C., Baranello, S., Cascella, A., Casciello, E., Ferrarini, F., Lirer, F., Monaco, R., & Rosskopf, C. (2011). Stratigrafia ed assetto geometrico dell’Unità del Sannio nel settore settentrionale dei monti del Matese. Rendiconti Online della Società Geologica Italiana, 12, 35–38.
  • Chiarabba, C., Bagh, S., Bianchi, I., De Gori, P., & Barchi, M. (2010). Deep structural heterogeneities and the tectonic evolution of the Abruzzi region (Central Apennines, Italy) revealed by microseismicity, seismic tomography, and teleseismic receiver functions. Earth Planetary Science Letters, 295(3-4), 462–476. https://doi.org/10.1016/j.epsl.2010.04.028
  • Chigira, M. (1992). Long-term gravitational deformation of rocks by mass rock creep. Engineering Geology, 32(3), 157–184. https://doi.org/10.1016/0013-7952(92)90043-X
  • Corniello, A., & Santo, A. (1994). Geologia e fenomeni gravitativi profondi nell'area dell'alto corso del Fiume Trigno (Molise). Geologica Romana, 30, 67–74.
  • Corrado, S., Di Bucci, D., Leschiutta, I., Naso, G., & Trigari, A. (1997). La tettonica quaternaria della piana d’Isernia nell’evoluzione strutturale del settore molisano. Il Quaternario, 10(2), 609–614.
  • Corrado, S., Di Bucci, D., Naso, G., & Butler, R. W. H. (1997). Thrusting and strike-slip tectonics in the Alto Molise region (Italy): implications for the Neogene-Quaternary evolution of the Central Apennines orogenic system. Journal of the Geological Society, London, 154(4), 679–688. https://doi.org/10.1144/gsjgs.154.4.0679
  • Corrado, S., Di Bucci, D., Naso, G., & Damiani, A. V. (1998). Rapporti tra le grandi unità stratigrafico-strutturali dell’Alto Molise (Appennino centrale). Italian Journal of Geosciences, 117(3), 761–776.
  • De Corso, S., Scrocca, D., & Tozzi, M. (1998). Geologia dell’anticlinale del Matese e implicazioni per la tettonica dell’Appennino Molisano. Italian Journal of Geosciences, 117(2), 419–441.
  • Delchiaro, M., Della Seta, M., Martino, S., Dehbozorgi, M., & Nozaem, R. (2019). Reconstruction of river valley evolution before and after the emplacement of the giant Seymareh rock avalanche (Zagros Mts., Iran). Earth Surface Dynamics, 7(4), 929–947. https://doi.org/10.5194/esurf-2018-91
  • Delchiaro, M., Della Seta, M., Martino, S., Nozaem, R., & Moumeni, M. (2022). Tectonic deformation and landscape evolution inducing mass rock creep driven landslides: The Loumar case-study (Zagros Fold and Thrust Belt, Iran). Tectonophysics, 846, 229655. https://doi.org/10.1016/j.tecto.2022.229655
  • Delchiaro, M., Mele, E., Della Seta, M., Martino, S., Mazzanti, P., & Esposito, C. (2021). Quantitative investigation of a mass rock creep deforming slope through A-Din SAR and geomorphometry. In V. Vilímek, F. Wang, A. Strom, K. Sassa, P. T. Bobrowsky, & K. Takara (Eds.), Understanding and reducing landslide disaster risk. WLF 2020. ICL contribution to landslide disaster risk reduction. Springer. https://doi.org/10.1007/978-3-030-60319-9_18
  • Della Seta, M., Esposito, C., Marmoni, G. M., Martino, S., Scarascia Mugnozza, G., & Troiani, F. (2017). Morpho-structural evolution of the valley-slope systems and related implications on slope-scale gravitational processes: New results from the Mt. Genzana case history (central Apennines, Italy). Geomorphology, 289, 60–77. https://doi.org/10.1016/j.geomorph.2016.07.003
  • Di Bucci, D., Corrado, S., Naso, G., Parotto, M., & Praturlon, A. (1999). Evoluzione tettonica neogenico-quaternaria dell’area molisana. Italian Journal of Geosciences, 118(1), 13–30.
  • Di Bucci, D., Naso, G., Corrado, S., & Villa, I. M. (2005). Growth, interaction and seismogenic potential of coupled active normal faults (Isernia Basin, central-southern Italy). Terra Nova, 17(1), 44–55. https://doi.org/10.1111/j.1365-3121.2004.00582.x
  • Di Luzio, E., Discenza, M. E., Di Martire, D., Putignano, M. L., Minnillo, M., Esposito, C., & Scarascia Mugnozza, G. (2022). Investigation of the Luco dei Marsi DSGSD revealing the first evidence of a basal shear zone in the Central Apennine belt (Italy). Geomorphology, 408, 108249. https://doi.org/10.1016/j.geomorph.2022.108249
  • Di Luzio, E., Paniccia, D., Pitzianti, P., Sansonne, P., & Tozzi, M. (1999). Evoluzione tettonica dell’Alto Molise. Italian Journal of Geosciences, 118(2), 287–315.
  • Di Luzio, E., Saroli, M., Esposito, C., Bianchi Fasani, G., Cavinato, G. P., & Scarascia Mugnozza, G. (2004). Influence of structural framework on mountain slope deformation in the Maiella anticline (Central Apennines, Italy). Geomorphology, 60(3–4), 417–432. https://doi.org/10.1016/j.geomorph.2003.10.004
  • Di Martire, D., Novellino, A., Ramondini, M., & Calcaterra, D. (2016). A-Differential synthetic aperture radar interferometry analysis of a deep seated gravitational slope deformation occurring at Bisaccia (Italy). Science of The Total Environment, 550, 556–573. https://doi.org/10.1016/j.scitotenv.2016.01.102
  • Discenza, M. E., & Esposito, C. (2021). State-of-art and remarks on some open questions about DSGSDs: Hints from a review of the scientific literature on related topics. Italian Journal of Engineering Geology and Environment, 21(1), 31–59. https://doi.org/10.4408/IJEGE.2021-01.O-03
  • Discenza, M. E., Esposito, C., Martino, S., Petitta, M., Prestininzi, A., & Scarascia Mugnozza, G. (2011). The gravitational slope deformation of Mt. Rocchetta ridge (central Apennines, Italy): geological-evolutionary model and numerical analysis. Bulletin of Engineering Geology and the Environment, 70(4), 559–575. https://doi.org/10.1007/s10064-010-0342-7
  • Discenza, M. E., Esposito, C., Martino, S., Petitta, M., & Scarascia Mugnozza, G. (2009). Modello geologico-tecnico ed analisi numerica con approccio equivalente continuo della deformazione gravitativa di Monte della Rocchetta (Appennino Centrale, Italia). Rendiconti Online della Società Geologica Italiana, 6, 225–226. https://doi.org/10.2139/ssrn.3938163
  • Discenza, M. E., Martino, S., Bretschneider, A., & Scarascia Mugnozza, G. (2020). Influence of joints on creep processes involving rock masses: Results from physical-analogue laboratory tests. International Journal of Rock Mechanics and Mining Sciences, 128, 104261. https://doi.org/10.1016/j.ijrmms.2020.104261
  • Esposito, C., Di Luzio, E., Baleani, M., Troiani, F., Della Seta, M., Bozzano, F., & Mazzanti, P. (2021). Fold architecture predisposing deep-seated gravitational slope deformations within a flysch sequence in the Northern Apennines (Italy). Geomorphology, 380, 107629. https://doi.org/10.1016/j.geomorph.2021.107629
  • Esposito, C., Martino, S., & Scarascia Mugnozza, G. (2007). Mountain slope deformations along thrust fronts in jointed limestone: An equivalent continuum modelling approach. Geomorphology, 90(1-2), 55–72. https://doi.org/10.1016/j.geomorph.2007.01.017
  • Ferranti, L., Milano, G., Burrato, P., Palano, M., & Cannavò, F. (2015). The seismogenic structure of the 2013-2014 Matese seismic sequence, Southern Italy: Implication for the geometry of the Apennines active extensional belt. Geophysical Journal International, 201(2), 823–837. https://doi.org/10.1093/gji/ggv053
  • Galadini, F. (2006). Quaternary tectonics and large-scale gravitational deformations with evidence of rock-slide displacements in the central Apennines (central Italy). Geomorphology, 82(3–4), 201–228. https://doi.org/10.1016/j.geomorph.2006.05.003
  • Gori, S., Falcucci, E., Dramis, F., Galadini, F., Galli, P., Giaccio, B., Messina, P., Pizzi, A., Sposato, A., & Cosentino, D. (2014). Deep-seated gravitational slope deformation, large-scale rock failure, and active normal faulting along Mt. Morrone (Sulmona basin, Central Italy): Geomorphological and paleoseismological analyses. Geomorphology, 208, 88–101. https://doi.org/10.1016/j.geomorph.2013.11.017
  • Guerriero, L., Prinzi, E. P., Calcaterra, D., Ciarcia, S., Di Martire, D., Guadagno, F.M., Ruzza, G. & Revellino, P. (2021). Kinematics and geologic control of the deep-seated landslide affecting the historic center of Buonalbergo, southern Italy. Geomorphology, 394, 107961. https://doi.org/10.1016/j.geomorph.2021.107961
  • Hou, Y. L., Chigira, M., & Tsou, C. Y. (2014). Numerical study on deep-seated gravitational slope deformation in a shale-dominated dip slope due to river incision. Engineering Geology, 179, 59–75. https://doi.org/10.1016/j.enggeo.2014.06.020
  • Hutchinson, J. N. (1988, July 15). General report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. Proceedings of the 5th international symposium on landslides, Lausanne, Vol 1, pp 3–35.
  • Jarman, D., & Harrison, S. (2019). Rock slope failure in the British mountains. Geomorphology, 340, 202–233. https://doi.org/10.1016/j.geomorph.2019.03.002
  • Jenny, S., Goes, S., Giardini, D., & Kahle, H. G. (2006). Seismic potential of southern Italy. Tectonophysics, 415(1-4), 81–101. https://doi.org/10.1016/j.tecto.2005.12.003
  • Martino, S., Antonielli, B., Bozzano, F., Caprari, P., Discenza, M. E., Esposito, C., Fiorucci, M., Iannucci, R., Marmoni, G. M., & Schilirò, L. (2020). Landslides triggered after the 16 August 2018 Mw 5.1 Molise earthquake (Italy) by a combination of intense rainfalls and seismic shaking. Landslides, 17(5), 1177–1190. https://doi.org/10.1007/s10346-020-01359-w
  • Martino, S., Cercato, M., Della Seta, M., Esposito, C., Hailemikael, S., Iannucci, R., Martini, G., Paciello, A., Scarascia Mugnozza, G., Seneca, D., & Troiani, F. (2020). Relevance of rock slope deformations in local seismic response and microzonation: Insights from the Accumoli case-study (central Apennines, Italy). Engineering Geology, 266, 105427. https://doi.org/10.1016/j.enggeo.2019.105427
  • Martino, S., Della Seta, M., & Esposito, C. (2017). Back-analysis of rock landslides to infer rheological parameters. In X. T. Feng (Ed.), Rock mechanics and engineering, analysis, modeling and design. Taylor and Francis, vol. 3, pp. 237–268.
  • Martino, S., Prestininzi, A., & Scarascia Mugnozza, G. (2004). Geological-evolutionary model of a gravity-induced slope deformation in the carbonate Central Apennines (Italy). Quarterly Journal of Engineering Geology and Hydrogeology, 37(1), 31–47. https://doi.org/10.1144/1470-9236/03-030
  • Meisina, C., Zucca, F., Notti, D., Colombo, A., Cucchi, A., Savio, G., Giannico, C., & Bianchi, M. (2008). Geological interpretation of PSInSAR data at regional scale. Sensors, 8(11), 7469–7492. https://doi.org/10.3390/s8117469
  • Moro, M., Saroli, M., Gori, S., Falcucci, F., Galadini, F., & Messina, P. (2012). The interaction between active normal faulting and large scale gravitational mass movements revealed by paleoseismological techniques: A case study from central Italy. Geomorphology, 151, 164–174. https://doi.org/10.1016/j.geomorph.2012.01.026
  • Moro, M., Saroli, M., Salvi, S., Stramondo, S., & Doumaz, F. (2007). The relationship between seismic deformation and deep-seated gravitational movements during the 1997 Umbria-Marche (Central Italy) earthquakes. Geomorphology, 89(3-4), 297–307. https://doi.org/10.1016/j.geomorph.2006.12.013
  • Mostardini, F., & Merlini, S. (1986). Appennino centro-meridionale: Sezioni geologiche e proposta di modello strutturale. Memorie della Società Geologica Italiana, 35, 177–202.
  • Pánek, T., & Klimeš, J. (2016). Temporal behavior of deep-seated gravitational slope deformations: A review. Earth-Science Reviews, 156, 14–38. https://doi.org/10.1016/j.earscirev.2016.02.007
  • Patacca, E., & Scandone, P. (2007). Geology of the southern Apennines. Italian Journal of Geosciences, 7(special issue), 7, 75–119.
  • Patacca, E., Scandone, P., Bellatalla, M., Perilli, N., & Santini, U. (1992). La zona di giunzione tra l'arco appenninico settentrionale e l'arco appenninico meridionale nell'Abruzzo e nel Molise. In M. Tozzi, G. P. Cavinato, & M. Parotto (Eds.), Studi preliminari all’acquisizione dati del profile CROP11 Civitavecchia-Vasto. Studi Geologici Camerti, spec. issue 1991/2 (pp. 417–441). Università di Camerino.
  • Rovida, A., Locati, M., Camassi, R., Lolli, B., & Gasperini, P. (2016). CPTI15, the 2015 version of the parametric catalogue of Italian earthquakes. Milano, Bologna. http://emidius.mi.ingv.it/CPTI. https://doi.org/10.6092/INGV.IT-CPTI15
  • Savelli, D., Troiani, F., Bruciapaglia, E., Calderoni, G., Cavitolo, P., Dignani, A., Ortu, E., Teodori, S., Veneri, F., & Nesci, O. (2013). The landslide-dammed paleolake of Montelago (North Marche Apennines, Italy): Geomorphological evolution and paleoenvironmental outlines. Geografia Fisica e Dinamica Quaternaria, 36(2), 267–287. https://doi.org/10.4461/GFDQ.2013.36.22
  • Schwanghart, W., & Scherler, D. (2014). Topotoolbox 2–MATLAB-based software for topographic analysis and modeling in earth surface sciences. Earth Surface Dynamics, 2(1), 1–7. https://doi.org/10.5194/esurf-2-1-2014
  • Scrocca, D., & Tozzi, M. (1999). Tettogenesi mio-pliocenica dell’Appennino molisano. Italian Journal of Geosciences, 118(2), 255–286.
  • Vezzani, L., Festa, A., & Ghisetti, F. (2010). Geology and tectonic evolution of the Central-Southern Apennines, Italy. Geological Society of America Special Paper, 469, 1–58. https://doi.org/10.1130/SPE469
  • Vezzani, L., Ghisetti, F., & Festa, A. (2004). Geological map of Molise (scale 1: 100000). S.E.L.CA., Firenze.