1,051
Views
1
CrossRef citations to date
0
Altmetric
Science

Extremely fast Holocene coastal landscape evolution in the Kachchh Upland (NW India): Clues from a multidisciplinary review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2167617 | Received 13 Aug 2022, Accepted 05 Jan 2023, Published online: 21 Mar 2023

References

  • Arora, S., Malik, J. N., & Sahoo, S. (2019). Tectonophysics Paleoseismic evidence of a major earthquake event (s) along the hinterland faults : Pinjore Garden Fault (PGF) and Jhajra Fault (JF) in northwest. Tectonophysics, 757(January), 108–122. https://doi.org/10.1016/j.tecto.2019.01.001
  • Bhatt, N., & Bhonde, U. (2006). Geomorphic expression of late Quaternary sea level changes along the southern Saurashtra coast, western India. 4, 395–402.
  • Bilham, R., Lodi, S., Hough, S., Bukhary, S., Khan, A. M., & Rafeeqi, S. F. A. (2007). Seismic hazard in Karachi, Pakistan: Uncertain past, uncertain future. Seismological Research Letters, 78, 601–613.
  • Bilham, Roger. (1999). Slip parameters for the Rann of Kachchh, India, 16 June 1819, earthquake, quantified from contemporary accounts. Geological Society, London, Special Publications, 146(1), 295–319. https://doi.org/10.1144/GSL.SP.1999.146.01.18
  • Bisht, R. S. (2011). Major earthquake occurrences in archaeological strata of Harappan settlement at Dholavira (Kachchh, Gujarat) (abstract). In: International Symposium on the 2001 Bhuj Earthquake and Advances in Earthquake Science (AES-2011), Gandhinagar, 22-24 January.
  • Biswas, S K. (1982). Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin. AAPG Bulletin, 66(10), 1497–1513.
  • Biswas, S. K. (1987). Regional Tectonic Framework, Structure and Evolution ofthe Western Marginal Basins of India. Tectonophysics, 135, 307–327. doi:10.1016/0040-1951(87)90115-6
  • Biswas, S K. (2005). A review of structure and tectonics of Kutch basin, western India, with special reference to earthquakes. Curr. Sci, 88(10), 1592–1600.
  • Braun, A. (2021). DEM generation with Sentinel-1 Workflow and challenges. SkyWatch Space Applications Inc.: Waterloo, ON, Canada.
  • Burnes, A. (1834). Memoir on the eastern branch of the River Indus, giving an account of the alterations produced on it by an earthquake, also a theory of the formation of the runn, and some conjectures on the route of alexander the great; drawn up in the years 1827-1828. Transactions of the Royal Asiatic Society of Great Britain and Ireland, 3, 550–588.
  • Catuneanu, O., & Dave, A. (2017). Cenozoic sequence stratigraphy of the Kachchh Basin, India. Marine and Petroleum Geology, 86, 1106–1132. https://doi.org/10.1016/j.marpetgeo.2017.07.020
  • Choudhury, P. A. L. L. A. B. E. E., & Kumar, M. R. (2016). The Institute of Seismological Research—A premier research center for seismology in India. In Proc. Ind. Natl. Sci. Acad. (No. 3, pp. 1049-1060).
  • Chung, W. Y., & Gao, H. (1995). Source parameters of the Anjar earthquake of July 21, 1956, India, and its seismotectonic implications for the Kutch rift basin. Tectonophysics, 242(3–4), 281–292. https://doi.org/10.1016/0040-1951(94)00203-L
  • Cleuziou, S., & Tosi, M. (1993). Black boats of Magan: Some thoughts on Bronze Age water transport in Oman and beyond from the impressed bitumen slabs of Ra's al-Junayz. Annales Academiae Scientiarum Fennicae. Series B, 273, 745–761.
  • Corradino, M., Pepe, F., Burrato, P., Kanari, M., Parrino, N., Bertotti, G., … Tibor, G. (2021). An integrated multiscale method for the characterisation of active faults in offshore areas. The Case of Sant'Eufemia Gulf (Offshore Calabria, Italy). Frontiers in earth science, 9, 476.
  • Das, A., Prizomwala, S., Makwana, N., & Thakkar, M. (2017). Late Pleistocene-Holocene climate and sea level changes inferred 1 based on the tidal terrace sequence, Kachchh, Western India. Palaeogeography, Palaeoclimatology. Palaeoecology, 473, 82–93.
  • Dashora, A., Lohani, B., & Malik, J. N. (2007). A repository of earth resource information – CORONA satellite programme. Current Science, 92(7).
  • Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res, 86, 2825–2852. doi:10.1029/JB086iB04p02825
  • Ekström, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter, 200-201, 1–9. doi:10.1016/j.pepi.2012.04.002
  • Evans, G. A., Ramachandran, B., Zhang, Z., Bailey, B. G., & Cheng, P. (2008). An Accuracy Assessment of Cartosat-1 Stereo Image Data-Derived Digital Elevation Models: A Case Study of the Drum Mountains, Utah. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, B1. http://www.usgsquads.com/prod_doqq.htm (U.S. coverage).
  • Flemming, N. (2004). Submarine prehistoric archaeology of the Indian continental shelf: A potential resource. Current Science, 86(9), 1225–1230.
  • Gahalaut, V. K., & Bürgmann, R. (2004). Constraints on the source parameters of the 26 January 2001 Bhuj, India, earthquake from satellite images. Bulletin of the Seismological Society of America, 94(6), 2407–2413. https://doi.org/10.1785/0120040021
  • Gahalaut, V. K., Gahalaut, K., Dumka, R. K., Chaudhury, P., & Yadav, R. K. (2019). Geodetic evidence of high compression across seismically active Kachchh Paleorift, India. Tectonics, 38(8), 3097–3107. https://doi.org/10.1029/2019TC005496
  • Gaur, A. S., & Vora, K. H. (1999). Ancient shorelines of Gujarat, India, during the Indus civilization (late mid-holocene): A study based on archaeological evidences. Current Science, 77(1), 180–185. https://doi.org/10.1021/es402676n
  • Gaur, A. S., Vora, K. H., Sundaresh, Mani Murali, R., & Jayakumar, S. (2013). Was the Rann of kachchh navigable during the harappan times (mid-holocene)? An archaeological perspective. Current Science, 105(11), 1485–1491.
  • Gianinetto, M., & Fassi, F. (2008). Validation of CARTOSAT-1 DTM generation for the salon de provence test site. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, B1.
  • Giosan, L., Clift, P., Macklin, M., Fuller, D., Constantinescu, S., Durcan, J., Stevens, T., Duller, G., Tabrez, A., Gangal, K., Adhikari, R., Alizai, A., Filip, F., Vanlaningham, S., & Syvitski, J. (2012). Fluvial landscape of the Harappan civilization. PNAS E, 109(26), E1688–E1694. https://doi.org/10.1073/pnas.1112743109
  • Gupta, S. K. (1972). Chronology of the raised beaches and inland coral reefs of the Saurashtra coast. Journal of Geology, 18(3), 357–361.
  • Gupta, S. K. (1975). Silting of the Rann of the Kutch during the Holocene. Indian J. Earth Sci, 2, 163–175.
  • Hashimi, N. H., Nigam, R., Nair, R. R., & Rajagopalan, G. (1995). Holocene sea level fluc- tuations on western Indian continental margin: An update. Journal of the Geological Society of India, 46, 157–162.
  • Heidbach, O., Rajabi, M., Reiter, K., & Ziegler, M. (2019). World stress map. In Encyclopedia of petroleum geoscience (pp. 1–8). Springer.
  • Johnston, A C, Coppersmith, K J, & Kanter, L R. (1994). Report TR (Vol. 10261, pp. 20–40). Electric Power and Research Institute.
  • Johnston, A. C., & Kanter, L. R. (1990). Earthquakes in stable continental crust. Sci. Am, 262, 69–75.
  • Kale, V. S., & Rajguru, S. N. (1985). Neogene and quaternary transgressional and regressional history of the west coast of India: An overview. Bulletin Deccan College, Research Institute, 44, 153–165.
  • Karanth, R. V., & Gadhavi, M. S. (2007). Structural intricacies: Emergent thrusts and blind thrusts of central Kachchh, western India. Current Science, 93, 1271–1280.
  • Kenoyer, J. M. (2003). Recently Excavated Artifacts from Pakistan Have Inspired a Reevaluation of One of the Great Early Urban Cultures—the Enigmatic Indus Valley Civilization: Undiscovering the Keys to Lost Indus Cities), vol. 289. Scientific American, Inc., pp. 68–75 1.
  • Makwana, N., Prizomwala, S. P., Chauhan, G., Phartiyal, B., & Thakkar, M. G. (2019). Late Holocene palaeo-environmental change in the Banni Plains, Kachchh, Western India. 507(January 2018), 197–205.
  • Makwana, N., Prizomwala, S. P., Das, A., Phartiyal, B., & Sodhi, A. (2021). Reconstructing the Climate Variability During the Last 5000 Years From the. 9(July), 1–11. https://doi.org/10.3389/feart.2021.679689.
  • Malik, J. N., Gadhavi, M. S., Kothyari, G. C., & Satuluri, S. (2017a). Paleo-earthquake signatures from the South Wagad Fault (SWF), Wagad Island, Kachchh, Gujarat, western India: A potential seismic hazard. Journal of Structural Geology, 95, 142–159. https://doi.org/10.1016/j.jsg.2016.12.011
  • Malik, J. N., Merh, S. S., & Sridhar, V. (1999b). Paleo-delta complex of Vedic Sarasvati and other ancient rivers of northwestern India. Memoir Geological Society of India, 163–174.
  • Malik, J. N., Morino, M., Mishra, P., Bhuiyan, C., & Kaneko, F. (2008). First active fault exposure identified along Kachchh Mainland Fault: Evidence from trench excavation near Lodai village, Gujarat, Western India. Journal of the Geological Society of India, 71, 201–208.
  • Malik, J. N., Naik, S. P., Sahoo, S., Okumura, K., & Mohanty, A. (2017b). Tectonophysics Paleoseismic evidence of the CE 1505 (?) and CE 1803 earthquakes from the foothill zone of the Kumaon Himalaya along the Himalayan Frontal Thrust (HFT), India. Tectonophysics, 714–715, 133–145. https://doi.org/10.1016/j.tecto.2016.07.026
  • Malik, J. N., Sohoni, P. S., Karanth, R. V., & Merh, S. S. (1999a). Modern and historic seismicity of Kachchh peninsula, western India. J. Geol. Soc. India 54.
  • Malik, J. N., Sohoni, P. S., Merh, S. S., & Karanth, R. V. (2000). Palaeoseismology and neotectonism of Kachchh, western India. In: Okumura, K., Takada, K., Goto, H. (Eds.), Proceedings of the Hokudan International Symposium and School on Active Faulting, Japan.
  • Malik, J. N., Sohoni, P. S., Merh, S. S., & Karanth, R. V. (2001). Active tectonic control on alluvial fan architecture along the Kachchh Mainland hill range, western India. Zeithschrift für Geomorphol, 45(1), 81–100.
  • Mathur, U. B., Pandey, D. K., & Bahadur, T. (2004). Falling late Holocene sea-level along Indian coast. Current Science, 87, 439–440.
  • Merh, S. S. (1995). Geology of Gujarat. J. Geol. Soc. India 222.
  • Morino, M., Malik, J. N., Mishra, P., Bhuiyan, C., & Kaneko, F. (2008). Active fault traces along Bhuj Fault and Katrol Hill fault, and Trenching survey at Wandhay, Kachchh, Gujarat, India. Journal of Earth System Science, 117(3), 181–188. https://doi.org/10.1007/s12040-008-0022-1
  • Oldham, T. (1883). A Catalogue of Indian Earthquakes from the Earliest Times to the End of 1869 A.D. Memoirs of Geological Survey of India. XIX, Part. 3.
  • Pant, R. K., & Juyal, N. (1993). Late Quaternary coastal instability and sea level changes: New evidences from Saurashtra coast, Western India. Zeitschirft f¨ur Geomorphologie, 37, 29–40.
  • Parrino, N., Burrato, P., Sulli, A., Gasparo Morticelli, M., Agate, M., Srivastava, E., Malik, J. N., & Di Maggio, C. (2022a). Plio-Quaternary coastal landscape evolution of north-western Sicily (Italy). Journal of Maps, https://doi.org/10.1080/17445647.2022.2159889
  • Parrino, N., Pepe, F., Burrato, P., Dardanelli, G., Corradino, M., Pipitone, C., Gasparo Morticelli, M., Sulli, A., & Di Maggio, C. (2022b). Elusive active faults in a low strain rate region (Sicily, Italy): Hints from a multidisciplinary land-to-sea approach. Tectonophysics, 839, 229520. https://doi.org/10.1016/j.tecto.2022.229520
  • Pillai, A. A. S., Anoop, A., Prasad, V., Manoj, M. C., Varghese, S., Sankaran, M., & Ratnam, J. (2018). Multi-proxy evidence for an arid shift in the climate and vegetation of the Banni grasslands of western India during the mid- to late-Holocene. https://doi.org/10.1177/0959683618761540.
  • Pillai, A. A. S., Anoop, A., Sankaran, M., Sanyal, P., Jha, D. K., & Ratnam, J. (2017). Mid-late Holocene vegetation response to climatic drivers and biotic disturbances in the Banni grasslands of western India. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 869–878. https://doi.org/10.1016/j.palaeo.2017.07.036
  • Pirrotta, C., Parrino, N., Pepe, F., Tansi, C., & Monaco, C. (2022). Geomorphological and morphometric analyses of the catanzaro trough (Central Calabrian Arc, Southern Italy): Seismotectonic implications. Geosciences, 12(9), 324. https://doi.org/10.3390/geosciences12090324
  • Possehl, G. (2002). The indus civilization: A contemporary perspective. Altamira Press.
  • Rajendran, C. P. (2001). Characteristics of Deformation and Past Seismicity Associated with the 1819 Kutch Earthquake, Northwestern India. Bulletin of the Seismological Society of America, 91(3), 407–426. https://doi.org/10.1785/0119990162
  • Sahoo, S., & Malik, J. N. (2017). Active fault topography along Kangra Valley Fault in the epicentral zone of 1905 Mw7 .8 earthquake NW Himalaya, India. Quaternary International, 462, 90–108. https://doi.org/10.1016/j.quaint.2017.03.020
  • Satuluri, S., Gadhavi, M. S., Malik, J. N., & Vikrama, B. (2020). Quantifying seismic induced damage at ancient site Manjal located in Kachchh Mainland region of Gujarat, India. Journal of Archaeological Science: Reports, 33(September 2019), 102486. https://doi.org/10.1016/j.jasrep.2020.102486
  • Schwanghart, W., & Scherler, D. (2014). TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2(1), 1–7.
  • Shaikh, M. A., Maurya, D. M., Mukherjee, S., Vanik, N. P., Padmalal, A., & Chamyal, L. S. (2020). Tectonic evolution of the intra-uplift Vigodi-Gugriana-Khirasra-Netra Fault System in the seismically active Kachchh rift basin, India : Implications for the western continental margin of the Indian plate. Journal of Structural Geology, 140(November 2019), 104124. https://doi.org/10.1016/j.jsg.2020.104124.
  • Shaikh, M. A., Patidar, A. K., Maurya, D. M., Vanik, N. P., Padmalal, A., Tiwari, P., … Chamyal, L. S. (2022). Building tectonic framework of a blind active fault zone using field and ground-penetrating radar data. Journal of Structural Geology, 155, 104526.
  • Sharma, S., Chauhan, G., Shukla, A. D., Nambiar, R., Bhushan, R., Desai, B. G., Pandey, S., Dabhi, M., Bhandari, S., Bhosale, S., Lakhote, A., & Juyal, N. (2020). Causes and implications of Mid- to Late Holocene relative sea-level change in the Gulf of Kachchh, western India. February, 2021), https://doi.org/10.1017/qua.2020.86
  • Sivewright, R. (1907). Cutch and the Ran. The Geographical Journal, 29, 518–535.
  • Sohoni, P., & Malik, J. N. (1998). Remnants of large magnitude earthquakes: Evidences from the Great Rann sediments, Kachchh, Western India. Current. Science, 74(11), 985–989.
  • Srivastava, E., Parrino, N., Malik, J., Pepe, F., & Burrato, P. (2021). Looking for the hidden morphological signature of active faults in a Low Strain Rate region: clues from the eastern Kachchh region (NW India). In EGU General Assembly Conference Abstracts (pp. EGU21-15982).
  • Tripathi, N., Singh, R. S., Parmar, D., & Mishra, B. K. (2013). The world's only inland mangrove in sacred grove of Kachchh, India, is at risk. Current Science, 105(8), 1053–1055.
  • Tyagi, A. K., Shukla, A. D., Bhushan, R., Thakker, P. S., Thakkar, M. G., & Juyal, N. (2012). Geomorphology Mid-Holocene sedimentation and landscape evolution in the western Great Rann of Kachchh, India. Geomorphology, 151–152, 89–98. https://doi.org/10.1016/j.geomorph.2012.01.018