143
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Biocomputing approach in forensic analysis

&
Pages 17-29 | Received 15 Oct 2015, Accepted 11 Nov 2015, Published online: 18 Feb 2016

References

  • J. Agudelo, C. Huynh, and J. Halámek, Forensic determination of blood sample age using a bioaffinity-based assay, Analyst 140 (2015), pp. 1411–1415.10.1039/C4AN02269F
  • J.H. An, K.J. Shin, W.I. Yang, and H.Y. Lee, Body fluid identification in forensics, BMB Rep. 45 (2012), pp. 545–553.10.5483/BMBRep.2012.45.10.206
  • S. Bakshi, O. Zavalov, J. Halámek, V. Privman, and E. Katz, Modularity of biochemical filtering for inducing sigmoid response in both inputs in an enzymatic AND gate, J. Phys. Chem. B 117 (2013), pp. 9857–9865.10.1021/jp4058675
  • S. Bakshi, L. Halámková, J. Halámek, and E. Katz, Biocatalytic analysis of biomarkers for forensic identification of gender, Analyst 139 (2014), pp. 559–563.10.1039/C3AN02055J
  • L. Barron and E. Gilchrist, Ion chromatography–mass spectrometry: A review of recent technologies and applications in forensic and environmental explosives analysis, Anal. Chim. Acta. 806 (2014), pp. 27–54.10.1016/j.aca.2013.10.047
  • E.G. Bartick, M.W. Tungol, and J.A. Reffner, A new approach to forensic analysis with infrared microscopy: Internal reflection spectroscopy, Anal. Chim. Acta. 288 (1994), pp. 35–42.10.1016/0003-2670(94)85114-X
  • M. Bauer, RNA in Forensic Science, Forensic. Sci. Int. Genet. 1 (2007), pp. 69–74.10.1016/j.fsigen.2006.11.002
  • M. Bauer, S. Polzin, and D. Patzelt, Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: A possible indicator of the age of bloodstains? Forensic. Sci. Int. 138 (2003), pp. 94–103.10.1016/j.forsciint.2003.09.008
  • S. Bell, Forensic chemistry, Ann. Rev. Anal. Chem. 2 (2009), pp. 297–319.
  • S. Bell, Forensic Chemistry, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2012.
  • Y. Benenson, Biocomputers: From test tubes to live cells, Mol. BioSyst. 5 (2009), pp. 675–685.10.1039/b902484k
  • E. Botonjic-Sehic, C.W. Brown, M. Lamontagne, and M. Tsaparikos, Forensic application of near-infrared spectroscopy: Aging of bloodstains, Spectroscopy 2 (2009), pp. 42–48.
  • R.H. Bremmer, K.G. de Bruin, M.J. van Gemert, T.G. van Leeuwen, and M.C. Aalders, Forensic quest for age determination of bloodstains, Forensic. Sci. Int. 216 (2010), pp. 1–11.
  • J. Butler, Fundamentals of Forensic DNA Typing, Academic Press, San Diego, CA, 2009.
  • S.N. Byers, Forensic Anthropology, Pearson Education Ltd., Boston, MA, 2008.
  • L.L. Cavalli-Sforza, P. Menozzi, and A. Piazza, The History and Geography of Human Genes, 1st ed., Princeton University Press, Princeton, NJ, 1994.
  • M.C. Chuang, J.R. Windmiller, P. Santhosh, G. Valdés Ramírez, E. Katz, and J. Wang, High-fidelity determination of security threats via a Boolean biocatalytic cascade, Chem. Commun. 47 (2011), pp. 3087–3089.10.1039/c0cc05716a
  • N. Dawnay, B. Stafford-Allen, D. Moore, S. Blackman, P. Rendell, E.K. Hanson, J. Ballantyne, B. Kallifatidis, J. Mendel, D.K. Mills, R. Nagy, and S. Wells, Developmental Validation of the ParaDNA® screening system – A presumptive test for the detection of DNA on forensic evidence items, Forensic. Sci. Int. Genet. 11 (2014), pp. 73–79.10.1016/j.fsigen.2014.02.004
  • M. Dean, J.C. Stephens, C. Winkler, D.A. Lomb, M. Ramsburg, R. Boaze, C. Stewart, L. Charbonneau, D. Goldman, B.J. Albaugh, J.J. Goedert, R.P. Beasley, L.Y. Hwang, S. Buchbinder, M. Weedon, P.A. Johnson, M. Eichelberger, and S. J. O’Brien, Polymorphic admixture typing in human ethnic populations, Am. J. Hum. Genet. 55 (1994), pp. 788–808.
  • A. Eckenrode, E.G. Bartick, S. Harvey, M.E. Vucelick, B.W. Wright, and R.A. Huff, Portable Raman spectroscopy systems for field analysis, Forensic. Sci. Commun. 3 (2001), pp. 1–17.
  • K.M. Elkins, Forensic DNA Biology: A Laboratory Manual, Academic Press, Oxford, 2012.
  • Z. Ezziane, DNA computing: Applications and challenges, Nanotechnology 17 (2006), pp. R27–R39.
  • G. Forster, E. Bernt, and H. U. Bergmeyer (1974). Creatine kinase, determination with creatine phosphate as substrate. in Methods of Enzymatic Analysis, H. U. Bergmeyer, Ed., Vol. 2, 2nd ed., Academic Press, Inc., New York, pp. 789–793.
  • Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: Long-term controlled experiment on the effects of environmental factors, Forensic. Sci. Int. 152 (2005), pp. 39–43.10.1016/j.forsciint.2005.02.029
  • R.E. Gaensslen, Sourcebook in Forensic Serology, Immunology, and Biochemistry, US Department of Justice, Washington, DC, 1983.
  • J. Halámek, J.R. Windmiller, J. Zhou, M.-C. Chuang, P. Santhosh, G. Strack, M.A. Arugula, S. Chinnapareddy, V. Bocharova, J. Wang, and E. Katz, Multiplexing of injury codes for the parallel operation of enzyme logic gates, Analyst 135 (2010), pp. 2249–2259.10.1039/c0an00270d
  • J. Halámek, V. Bocharova, S. Chinnapareddy, J.R. Windmiller, G. Strack, M.-C. Chuang, J. Zhou, P. Santhosh, G.V. Ramirez, M.A. Arugula, J. Wang, and E. Katz, Multi-enzyme logic network architectures for assessing injuries: Digital processing of biomarkers, Mol. BioSyst. 6 (2010), pp. 2554–2560.10.1039/c0mb00153h
  • J. Halámek, V. Bocharova, M.A. Arugula, G. Strack, V. Privman, and E. Katz, Realization and properties of biochemical-computing biocatalytic XOR gate based on enzyme inhibition by a substrate, J. Phys. Chem. B 115 (2011), pp. 9838–9845.10.1021/jp2041372
  • J. Halámek, O. Zavalov, L. Halámková, S. Korkmaz, V. Privman, and E. Katz, Enzyme-based logic analysis of biomarkers at physiological concentrations: AND gate with double-sigmoid ‘filter’ response, J. Phys. Chem. B 116 (2012), pp. 4457–4464.10.1021/jp300447w
  • L. Halámková, J. Halámek, V. Bocharova, S. Wolf, E.K. Mulier, and G. Beilman, J. Wang, and E. Katz, Analysis of biomarkers characteristic of porcine liver injury – From biomolecular logic gates to animal model, Analyst 137 (2012), pp. 1768–1770.10.1039/c2an00014h
  • K.M. Horsman, J.M. Bienvenue, K.R. Blasier, and J.P. Landers, Forensic DNA analysis on microfluidic devices: A review, J. Forensic. Sci. 52 (2007), pp. 784–799.10.1111/jfo.2007.52.issue-4
  • M.M. Houck (ed.), Forensic Chemistry. 1st ed. Elsevier – Academic Press, Cambridge, MA, 2015.
  • H. Inoue, F. Takabe, M. Iwasa, Y. Maeno, and Y. Seko, A new marker for estimation of bloodstain age by high performance liquid chromatography, Forensic. Sci. Int. 57 (1992), pp. 7–27.
  • G. Jackson and G.J. Verbeck, Forensic Chemistry: Instrumentation and Applications, Wiley, Chicester, 2015.
  • S.H. James, J.J. Nordby, and S. Bell (eds.), Forensic Science: An Introduction to Scientific and Investigative Techniques, 3rd ed., CRC Press, Boca Raton, FL, 2009.
  • Katz, E. (ed.), Biomolecular Information Processing – From Logic Systems to Smart Sensors and Actuators. Wiley–VCH, Weinheim, 2012.
  • E. Katz and J. Halámek, New approach in forensic analysis – Biomolecular computing based analysis of significant forensic biomarkers, Ann. Forensic. Res. Anal. 1 (2014), p. 1002.
  • E. Katz, J. Halámek. (eds.), Forensic Science – A Multidisciplinary Approach. Wiley–VCH, Weinheim, 2015.
  • E. Katz, and V. Privman, Enzyme-based logic systems for information processing, Chem. Soc. Rev. 39 (2010), pp. 1835–1857.10.1039/b806038j
  • E. Katz, and J. Wang (2012). Enzyme logic digital biosensors for biomedical applications. in Biomolecular Information Processing – From Logic Systems to Smart Sensors and Actuators, E. Katz, ed., Wiley–VCH, Weinheim, pp. 81–101.
  • E. Katz, J. Wang, M. Privman, and J. Halámek, Multianalyte digital enzyme biosensors with built-in boolean logic, Anal. Chem. 84 (2012), pp. 5463–5469.10.1021/ac3007076
  • J.I. Khan, T.J. Kennedy, and D.R. Christian Jr, Basic Principles of Forensic Chemistry, Human Press, New York, 2012.10.1007/978-1-59745-437-7
  • L. Kobilinsky, Forensic Chemistry Handbook, Wiley, Hoboken, NJ, 2011.10.1002/9781118062241
  • F. Kramer, L. Halámková, A. Poghossian, M.J. Schöning, E. Katz, and J. Halámek, Biocatalytic analysis of biomarkers for forensic identification of ethnicity between Caucasian and African American groups, Analyst 138 (2013), pp. 6251–6257.10.1039/c3an01062g
  • H.C. Lee, R. Ramotowski, and R.E. Gaensslen, Advances in Fingerprint Technology, CRC Press, Boca Raton, FL, 2001.10.1201/CRCFORPOLSCI
  • J.K. Lee, J.H. Shim, H.C. Lee, S.H. Lee, K.M. Kim, Y.-S. Lim, and Y.–H. Chung, Y.S. Lee, and D.J. Suh, Estimation of the healthy upper limits for serum alanine aminotransferase in Asian populations with normal liver histology, Hepatology 51 (2010), pp. 1577–1583.10.1002/hep.23505
  • P.R. Lewis and C. Gagg, Forensic Polymer Engineering, Woodhead/CRC Press, Boca Raton, FL, 2010.10.1533/9781845697808
  • P.R. Lewis, K. Reynolds, and C. Gagg, Forensic Materials Engineering: Case Studies, CRC Press, Boca Raton, FL, 2003.
  • R. Li, Forensic Biology, CRC Press, Boca Raton, FL, 2008.
  • C.-T. Li, Computational Forensics, Digital Crime, and Investigation, Yurchak Printing Inc., Hershey, PA, 2011.
  • R. Li, Forensic Biology, 2nd ed., CRC Press, Boca Raton, FL, 2015.
  • Z. Li, M.A. Rosenbaum, A. Venkataraman, T.K. Tam, E. Katz, and L.T. Angenent, Bacteria-based AND logic gate: A decision-making and self-powered biosensor, Chem. Commun. 47 (2011), pp. 3060–3062.10.1039/c0cc05037g
  • P. Liu, S.H. Yeung, K.A. Crenshaw, C.A. Crouse, J.R. Scherer, and R.A. Mathies, Real–time forensic DNA analysis at a crime scene using a portable microchip analyzer, Forensic. Sci. Int. Genet. 2 (2008), pp. 301–309.10.1016/j.fsigen.2008.03.009
  • T. Matsuoka, T. Taguchi, and J. Okuda, Estimation of bloodstain age by rapid determinations of oxyhemoglobin by use of oxygen electrode and total hemoglobin, Biol. Pharm. Bull. 18 (1995), pp. 1031–1035.10.1248/bpb.18.1031
  • D. Melnikov, G. Strack, J. Zhou, J.R. Windmiller, J. Halámek, V. Bocharova, M.-C. Chuang, P. Santhosh, V. Privman, J. Wang, and E. Katz, Enzymatic AND logic gates operated under conditions characteristic of biomedical applications, J. Phys. Chem. B. 114 (2010), pp. 12166–12174.10.1021/jp105912e
  • H. Miller Coyle (ed.), Forensic Botany: Principles and Applications to Criminal Casework, CRC Press, Boca Raton, FL, 2004.
  • C.K. Muro, K.C. Doty, J. Bueno, L. Halámková, and I.K. Lednev, Vibrational spectroscopy: Recent developments to revolutionize forensic science, Anal. Chem. 87 (2015), pp. 306–327.10.1021/ac504068a
  • L. Noda, T. Nihet, and M.F. Morale, The enzymatic activity and inhibition of adenosine 5’–triphosphate–creatine transphosphorylase, J. Biol. Chem. 235 (1960), pp. 2830–2834.
  • R.K. Noon, Forensic Engineering Investigation, CRC Press, Boca Raton, FL, 2001.
  • A.M. O’Mahony and J. Wang, Electrochemical detection of gunshot residue for forensic analysis: A review, Electroanal. 25 (2013), pp. 1341–1358.10.1002/elan.v25.6
  • D. Patterson, Use of reflectance measurements in assessing the colour changes of ageing bloodstains, Nature 187 (1960), pp. 688–689.10.1038/187688a0
  • J. Payne-James, A. Busuttil, and W. Smock (eds.), Forensic Medicine: Clinical and Pathological Aspects, Greenwich Medical Media Ltd, San Francisco, CA, 2003.
  • D. Prati, E. Taioli, A. Zanella, E.D. Torre, S. Butelli, E.D. Vecchio, L. Vianello, F. Zanuso, F. Mozzi, S. Milani, D. Conte, M. Colombo, and G. Sirchia, Updated definitions of healthy ranges for serum alanine aminotransferase levels, Ann. Intern. Med. 137 (2002), pp. 1–9.10.7326/0003-4819-137-1-200207020-00006
  • V. Privman, Control of noise in chemical and biochemical informationprocessing, Israel J. Chem. 51 (2011), pp. 118–131.10.1002/ijch.v51.1
  • V. Privman, J. Zhou, J. Halámek, and E. Katz, Realization and properties of biochemical-computing biocatalytic XOR gate based on signal change, J. Phys. Chem. B. 114 (2010), pp. 13601–13608.10.1021/jp107562p
  • V. Privman, B.E. Fratto, O. Zavalov, J. Halámek, and E. Katz, Enzymatic AND logic gate with sigmoid response induced by photochemically controlled oxidation of the output, J. Phys. Chem. B 117 (2013), pp. 7559–7568.10.1021/jp404054f
  • S.B. Rosalki, and J.H. Wilkinson, Reduction of α-ketobutyrate by human serum, Nature 188 (1960), pp. 1110–1111.10.1038/1881110a0
  • A.K. Roychoudhury, and M. Nei, Human Polymorphic genes: World Distribution, Oxford University Press, New York, 1988.
  • R. Saferstein, Criminalistics: An Introduction to Forensic Science, 11th ed., Prentice Hall, Upper Saddle River, NJ, 2014.
  • P.D. Schwarzacher, Determination of the age of bloodstains, Am. J. Police Sci. 1 (1930), pp. 374–380.10.2307/1147182
  • R.C. Shaler, Modern forensic biology, in Forensic Science Handbook, R. Saferstein, ed., Prentice Hall, Upper Saddle River, NJ, 2002, pp. 529–546.
  • P. Shrivastava and A.K. Guru, Recent Advances in Forensic Biology, Anmol Publications Pvt, New Delhi, 2002.
  • M.D. Shriver, M.W. Smith, L. Jin, A. Marcini, J.M. Akey, R. Deka, and R.E. Ferrell, Ethnic-affiliation estimation by use of population-specific DNA markers, Am. J. Hum. Genet. 60 (1997), pp. 957–964.
  • J.A. Siegel and K. Mirakovits, Forensic Science: The Basics, CRC Press, Boca Raton, FL, 2010.
  • A. Sikirzhytskaya, V. Sikirzhytski, G. McLaughlin, and I.K. Lednev, Forensic identification of blood in the presence of contaminations using raman microspectroscopy coupled with advanced statistics: Effect of sand, dust, and soil, J Forensic. Sci. 58 (2013), pp. 1141–1148.10.1111/1556-4029.12248
  • V. Sikirzhytski, A. Sikirzhytskaya, and I.K. Lednev, Multidimensional raman spectroscopic signatures as a tool for forensic identification of body fluid traces: A review, Appl. Spectrosc. 65 (2011), pp. 1223–1232.10.1366/11-06455
  • J.P. Smith, J.P. Metters, D.K. Kampouris, C. Lledo-Fernandez, O.B. Sutcliffe, and C.E. Banks, Forensic electrochemistry: The electroanalytical sensing of Rohypnol® (flunitrazepam) using screen-printed graphite electrodes without recourse for electrode or sample pre-treatment, Analyst 138 (2013), pp. 6185–6191.10.1039/c3an01352a
  • M.N. Stojanovic, Some experiments and directions in molecular computing and robotics, Israel J. Chem. 51 (2011), pp. 99–105.10.1002/ijch.v51.1
  • M.N. Stojanovic, T.E. Mitchell, and D. Stefanovic, Deoxyribozyme-based logic gates, J. Am. Chem. Soc. 124 (2002), pp. 3555–3561.10.1021/ja016756v
  • G. Strack, H.R. Luckarift, G.R. Johnson, and E. Katz. (2012). Information security applications based on biomolecular systems. in Biomolecular Information Processing – From Logic Systems to Smart Sensors and Actuators, E. Katz, ed., Wiley–VCH, Weinheim, pp. 103–116.
  • S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W.M. Heckl, A.G. Nerlich, and S. Thalhammer, Age determination of blood spots in forensic medicine by force spectroscopy, Forensic. Sci. Int. 170 (2007), pp. 8–14.10.1016/j.forsciint.2006.08.023
  • N.D. Tribble, J.A.D. Miller, N. Dawnay, and N.J. Duxbury, Applicability of the ParaDNA® screening system to seminal samples, J. Forensic. Sci. 60 (2015), pp. 690–692.10.1111/jfo.2015.60.issue-3
  • A. Tsutsumi, and H. Ishizu, Jpn. J. Legal Med. 37 (1983), pp. 770–776.
  • R. Unger, and J. Moult, Towards computing with proteins, Proteins 63 (2006), pp. 53–64.10.1002/prot.20886
  • K. Virkler and I.K. Lednev, Raman spectroscopic signature of semen and its potential application to forensic body fluid identification, Forensic. Sci. Int. 193 (2009), pp. 56–62.10.1016/j.forsciint.2009.09.005
  • K. Virkler and I.K. Lednev, Analysis of body fluids for forensic purposes: From laboratory testing to non-destructive rapid confirmatory identification at a crime scene, Forensic. Sci. Int. 188 (2009), pp. 1–17.10.1016/j.forsciint.2009.02.013
  • J. Wang and E. Katz, Digital biosensors with built-in logic for biomedical applications-biosensors based on a biocomputing concept, Anal. Bioanal. Chem. 398 (2010), pp. 1591–1603.10.1007/s00216-010-3746-0
  • M.N. Win, and C.D. Smolke, Higher-order cellular information processing with synthetic RNA devices, Science 322 (2008), pp. 456–460.10.1126/science.1160311
  • A.H.B. Wu, Tietz Clinical Guide to Laboratory Tests, 4th ed., Saunders-Elsevier, St. Louis, MO, 2006.
  • O. Zavalov, V.P. Bocharova, V. Privman, and E. Katz, Enzyme-based logic: OR gate with double-sigmoid filter response, J. Phys. Chem. B 116 (2012), pp. 9683–9689.10.1021/jp305183d
  • N. Zhou, J.R. Windmiller, G.V. Ramírez, M. Zhou, J. Halámek, E. Katz, and J. Wang, Enzyme-based NAND gate for rapid electrochemical screening of traumatic brain injury in serum, Anal. Chim. Acta. 703 (2011), pp. 94–100.10.1016/j.aca.2011.07.023
  • J. Zhou, J. Halámek, V. Bocharova, J. Wang, and E. Katz, Bio-logic analysis of injury biomarker patterns in human serum samples, Talanta 83 (2011), pp. 955–959.10.1016/j.talanta.2010.10.057

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.