302
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Reaction–diffusion chemistry implementation of associative memory neural network

&
Pages 74-94 | Received 11 Dec 2015, Accepted 15 Feb 2016, Published online: 07 Mar 2016

References

  • A. Adamatzky, Computing in Nonlinear Media and Automata Collectives, IoP Publishing, Bristol, 2001.
  • A. Adamatzky, If BZ medium did spanning trees these would be the same trees as Physarum built, Phys. Lett. A 373(10) (2009), pp. 952–956.
  • A. Adamatzky, B. De Lacy Costello and T. Asai, Reaction–-diffusion Computers, Elsevier Science, Amsterdam, 2005.
  • A. Adamatzky, B. De Lacy Costello, L. Bull, and J. Holley, Towards arithmetic circuits in sub-excitable chemical media, Isr. J. Chem. 51(1) (2011), pp. 56–66.
  • A. Adamatzky, A. Wuensche, A. Wuensche, and B. De Lacy Costello, Glider-based computing in reaction--diffusion hexagonal cellular automata, Chaos, Solitons Fractals 27(2) (2006), pp. 287–295.
  • L. Adleman, Molecular computation of solutions to combinatorial problems, Science 266(5187) (1994), pp. 1021–1024.
  • K. Agladze, R.R. Aliev, T. Yamaguchi, and K. Yoshikawa, Chemical diode, J. Phys. Chem. 100 (1996), pp. 13895–13897.
  • T. Asai, B. De Lacy Costello, and A. Adamatzky, Silicon implementation of a chemical reaction--diffusion processor for computation of Voronoi diagram, Int. J. Bifurcation Chaos 15(10) (2005), pp. 3307–3320.
  • J. Austin and T.J. Stonham, Distributed associative memory for use in scene analysis, Image Vision Comput. 5(4) (1987), pp. 251–260.
  • B.P. Belousov, A Periodic Reaction and Its Mechanism, Med Publishing, Moscow, 1959.
  • G.A. Carpenter, Neural network models for pattern recognition and associative memory, Neural Networks 2(4) (1989), pp. 243–257.
  • M. Conrad, The brain-machine disanalogy, Biosystems 22(3) (1989), pp. 197–213.
  • M. Conrad and K. Zauner, Conformation-based computing: A rationale and a recipe, in Molecular Computing, chap 1, T. Sienko, A. Adamatzky, N. Rambidi, and M. Conrad, eds., MIT Press, Cambridge, MA, 2003, pp. 1–31.
  • M. Dolnik, M. Marek, and I.R. Epstein, Resonances in periodically forced excitable systems, J. Phys. Chem. 96(8) (1992), pp. 3218–3224.
  • R.J. Field, R.D. Janz, and D.J. Vanecek, Composite double oscillation in a modified version of the Oregonator model of the Belousov--Zhabotinsky reaction, J. Chem. Phys. 73(7) (1980), pp. 3132–3138.
  • P.L. Gentili, V. Horvath, V.K. Vanag, and I.R. Epstein, Belousov--Zhabotinsky “chemical neuron” as a binary and fuzzy logic processor, J. Unconventional Comput. 8 (2012), pp. 177–192.
  • W.F. Gilreath and P.A. Laplante, Historical review of OISC, in Computer Architecture: A Minimalist Perspective Vol. 730, The Kluwer International Series in Engineering and Computer Science, New York, Springer, 2003, pp. 51–54.
  • J. Gorecki, K. Yoshikawa, and Y. Igarashi, On chemical reactors that can count, J. Phys. Chem. A 107(10) (2003), pp. 1664–1669.
  • J. Gorecki, J. Gorecka, and Y. Igarashi, Information processing with structured excitable medium, Nat. Comput. 8 (2009), pp. 473–492.
  • S. Haykin, Neural Networks: A Comprehensive Foundation, 1st ed., Prentice Hall PTR, Upper Saddle River, NJ, 1994.
  • J. Holley, A. Adamatzky, L. Bull, B. De Lacy Costello, and I. Jahan, Computational modalities of Belousov--Zhabotinsky encapsulated vesicles, (2010). Available at ArXiv e-prints.
  • E. Katz (ed.), Molecular and Supramolecular Information Processing: From Molecular Switches to Logic Systems, Wiley-VCH, Weinheim, 2012.
  • T. Kohonen, Correlation matrix memories, IEEE Trans. Comput. C-21 4(1972), pp. 353–359.
  • L. Kuhnert, A new optical photochemical memory device in a light-sensitive chemical active medium, Nature 319(6052) (1986), pp. 393–394.
  • L. Kuhnert, Photochemische manipulation von chemischen wellen (in German), Naturwissenschaften 73 (1986), pp. 96–97.
  • L. Kuhnert, K.I. Agladze, and V.I. Krinsky, Image processing using light-sensitive chemical waves, Nature 337(6204) (1989), pp. 244–247.
  • J. Laplante, M. Pemberton, A. Hjelmfelt, and J. Ross, Experiments on pattern recognition by chemical kinetics, J. Phys. Chem. 99(25) (1995), pp. 10063–10065.
  • A. Lázár, Z. Noszticzius, H. Farkas, and H.D. Försterling, Involutes: The geometry of chemical waves rotating in annular membranes, Chaos 5(2) (1995), pp. 443–447.
  • I. Motoike and K. Yoshikawa, Information operations with an excitable field, Phys. Rev. E 59 (1999), pp. 5354–5360.
  • U. Müller, Brainfuck---an eight-instruction Turing-complete programming language, 1993. Available at http://www.muppetlabs.com/~breadbox/bf/.
  • T. Nakagaki, H. Yamada, and Á. Tóth, Path finding by tube morphogenesis in an amoeboid organism, Biophys. Chem. 92(1–2) (2001), pp. 47–52.
  • N. Rambidi, Chemical-based computing and problems of high computational complexity: The reaction--diffusion paradigm, in Molecular Computing, chap 4, T. Sienko, A. Adamatzky, N. Rambidi and M. Conrad, eds., MIT Press, Cambridge, MA, 2003, pp. 91–152.
  • A.B. Rovinsky and A.M. Zhabotinsky, Mechanism and mathematical model of the oscillating bromate-ferroin-bromomalonic acid reaction, J. Phys. Chem. 88(25) (1984), pp. 6081–6084.
  • D. Scalise and R. Schulman, Emulating cellular automata in chemical reaction-diffusion networks, in DNA Computing and Molecular Programming, Vol. 8727, Lecture Notes in Computer Science, S. Murata and S. Kobayashi, eds., Springer, 2014, pp. 67–83.
  • O. Steinbock, Á. Tóth, and K. Showalter, Navigating complex labyrinths: Optimal paths from chemical waves, Science 267(5199) (1995), pp. 868–871.
  • S. Stepney, Unconventional computer programming, in Symposium on Natural/Unconventional Computing and Its Philosophical Significance, AISB, London, 2012.
  • S. Stepney, S. Abramsky, A. Adamatzky, C. Johnson, and J. Timmis, Grand challenge 7: Journeys in non-classical computation, in Visions of Computer Science, London, 2008, pp. 407–421.
  • J. Stovold, and S. O’Keefe, Simulating neurons in reaction-diffusion chemistry, in Information Processing in Cells and Tissues, Vol. 7223, Lecture Notes in Computer Science, M. Lones, S. Smith, S. Teichmann, F. Naef, J. Walker and M. Trefzer, eds., Springer, Berlin / Heidelberg, 2012, pp. 143–149.
  • D. Tolmachiev, and A. Adamatzky, Chemical processor for computation of Voronoi diagram, Adv. Mater. Opt. Electron. 6(4) (1996), pp. 191–196.
  • Á. Tóth, and K. Showalter, Logic gates in excitable media, J. Chem. Phys. 103(6) (1995), pp. 2058–2066.
  • A.M.Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. London Ser. B, Biol. Sci. 237 641(1952), pp. 37–72.
  • D.J. Willshaw, O.P. Buneman, and H.C. Longuet-Higgins, Non-holographic associative memory, Nature 222(5197) (1969), pp. 960–962.
  • A. Zhabotinsky, and A. Zaikin, Autowave processes in a distributed chemical system, J. Theor. Biol. 40(1) (1973), pp. 45–61.
  • A.M. Zhabotinsky, Periodic course of the oxidation of malonic acid in a solution (studies on the kinetics of Belousov’s reaction), Biofizika 9 (1964), pp. 306–311.
  • A.M. Zhabotinsky, A history of chemical oscillations and waves. Chaos: Interdisciplinary, J. Nonlinear Sci. 1(4) (1991), pp. 379–386.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.