92
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Utilization of a fluidic infrastructure for the realization of enzyme-based Boolean logic operations

&
Pages 139-156 | Received 12 Jul 2016, Accepted 12 Jul 2016, Published online: 28 Jul 2016

References

  • A. Adamatzky, Computing with waves in chemical media: Massively parallel reaction-diffusion on processors, IEICE Trans. Electron. E87C (2004), pp. 1748–1756.
  • A. Adamatzky, Topics in reaction-diffusion computers, J. Comp. Theor. Nanosci. 8 (2011), pp. 295–303.10.1166/jctn.2011.1693
  • A. Adamatzky and B. de Lacy Costello, On some limitations of reaction–diffusion chemical computers in relation to Voronoi diagram and its inversion, Phys. Lett. A 309 (2003), pp. 397–406.10.1016/S0375-9601(03)00206-8
  • A. Adamatzky, B. de Lacy Costello, and T. Asai, Reaction-diffusion Computers, Elsevier, New York, 2005.
  • A. Adamatzky, B. Costello, L. Bull, and J. Holley, Towards arithmetic circuits in sub-excitable chemical media, Isr. J. Chem. 51 (2011), pp. 56–66.10.1002/ijch.v51.1
  • L.M. Adleman, Molecular computation of solutions to combinatorial problems, Science 266 (1994), pp. 1021–1024.10.1126/science.7973651
  • U. Alon, An Introduction to Systems Biology, Design Principles of Biological Circuits, Chapman & Hall/CRC Press, London, 2007.
  • J. Andreasson, U. Pischel, S.D. Straight, T.A. Moore, A.L. Moore, and D.J. Gust, All-photonic multifunctional molecular logic device, J. Am. Chem. Soc. 133 (2011), pp. 11641–11648.10.1021/ja203456h
  • M.N. Arechederra, P.K. Addo, and S.D. Minteer, Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: Towards the development of a rechargeable biobattery, Electrochim. Acta 56 (2011), pp. 1585–1590.10.1016/j.electacta.2010.10.045
  • M.A. Arugula, N. Shroff, E. Katz, and Z. He, Molecular AND logic gate based on bacterial anaerobic respiration, Chem. Commun. 48 (2012), pp. 10174–10176.10.1039/c2cc35595g
  • G. Ashkenasy, Z. Dadon, S. Alesebi, N. Wagner, and N. Ashkenasy, Building logic into peptide networks: Bottom-up and top-down, Isr. J. Chem. 51 (2011), pp. 106–117.
  • S. Bakshi, O. Zavalov, J. Halámek, V. Privman, and E. Katz, Modularity of biochemical filtering for inducing sigmoid response in both inputs in an enzymatic AND gate, J. Phys. Chem. B 117 (2013), pp. 9857–9865.10.1021/jp4058675
  • R. Baron, O. Lioubashevski, E. Katz, T. Niazov, and I. Willner, Logic gates and elementary computing by enzymes, J. Phys. Chem. A 110 (2006), pp. 8548–8553.10.1021/jp0568327
  • R. Barron, O. Lioubashevski, E. Katz, T. Niazov, and I. Willner, Elementary arithmetic operations by enzymes: A model for metabolic pathway based computing, Angew. Chem. Int. Ed. 45 (2006), pp. 1472–1576.
  • Y. Benenson, RNA-based computation in live cells, Curr. Opin. Biotechnol. 20 (2009), pp. 471–478.10.1016/j.copbio.2009.08.002
  • Y. Benenson, Biocomputing DNA computes a square root, Nat. Nanotechnol. 6 (2011), pp. 465–467.10.1038/nnano.2011.128
  • Y. Benenson, Biomolecular computing systems: principles, progress and potential, Nat. Rev. Genet. 13 (2012), pp. 455–468.10.1038/nrg3197
  • C.H. Bennett, Logical reversibility of computing, IBM J. Res. Dev. 17 (1973), pp. 525–532.10.1147/rd.176.0525
  • H.U. Bergmeyer, Nicotinamide Mononucleotide, Methods of Enzymatic Analysis Vol. 4, 2nd ed., Academic Press, New York, 1974, pp. 2073−2077.
  • C.S. Calude, J.F. Costa, N. Dershowitz, E. Freire, and G. Rozenberg (eds.), Unconventional Computation, Lecture Notes in Computer Science, Springer, Berlin, 2009.
  • J. Cervera and S. Mafo, Multivalued and reversible logic gates implemented with metallic nanoparticles and organic ligands, ChemPhysChem 11 (2010), pp. 1654–1658.10.1002/cphc.200900973
  • A.P. De Silva, S. Uchiyama, T.P. Vance, and B. Wannalerse, A supramolecular chemistry basis for molecular logic and computation, Coord. Chem. Rev. 251 (2007), pp. 1623–1632.10.1016/j.ccr.2007.03.001
  • Z. Ezziane, DNA computing: Applications and challenges, Nanotechnology 17 (2006), pp. R27–R39.
  • E.E. Ferrandi, D. Monti, I. Patel, R. Kittl, D. Haltrich, S. Riva, and R. Ludwig, Exploitation of a laccase/meldola’s blue system for NAD+ regeneration in preparative scale hydroxysteroid dehydrogenase catalized oxidations, Adv. Synth. Catal. 354 (2012), pp. 2821–2828.10.1002/adsc.v354.14/15
  • R.P. Feynman, There’s plenty of room at the bottom, Eng. Sci. 32 (1960), pp. 22–36.
  • R.P. Feynman, Feynman Lectures on Computation, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1998.
  • R.J. Field and M. Burger (eds.), Oscillations and traveling waves in chemical systems, Wiley, New York, 1985.
  • B.E. Fratto and E. Katz, Reversible logic gates based on enzyme-biocatalyzed reactions and realized in flow cells – Modular approach, ChemPhysChem 16 (2015), pp. 1405–1415.10.1002/cphc.201500042
  • B.E. Fratto and E. Katz, Controlled logic gates-switch gate and fredkin gate based on enzyme-biocatalyzed reactions realized in flow cells, ChemPhysChem 17 (2016), pp. 1046–1053.10.1002/cphc.v17.7
  • B.E. Fratto, L.J. Roby, N. Guz, and E. Katz, Enzyme-based logic gates switchable between OR, NXOR and NAND Boolean operations realized in a flow system, Chem. Commun. 50 (2014), pp. 12043–12046.10.1039/C4CC05769D
  • B.E. Fratto, J.M. Lewer, E. Katz, Enzyme-based half-adder and half-subtractor with a modular design, ChemPhysChem (in press ), doi: 10.1002/cphc.201600173
  • E. Fredkin and T. Toffoli, Design principles for achieving high-performance submicron digital technologies, Proposal to DARPA, MIT Laboratory for Computer Science, 1978.
  • E. Fredkin, and T. Toffoli, Conservative logic, Int. J. Theor. Phys. 21 (1982), pp. 219–253.10.1007/BF01857727
  • M. Freebody, Perserving Moore’s law pushes lithography to its limits, Photonics Spectra 45 (2011), pp. 45–47.
  • M. Gamella, N. Guz, S. Mailloux, J.M. Pingarrón, and E. Katz, Antibacterial drug release electrochemically stimulated by the presence of bacterial cells – Theranostic approach, Electroanalysis 26 (2014), pp. 2552–2557.10.1002/elan.v26.12
  • M. Gamella, N. Guz, S. Mailloux, J.M. Pingarron, and E. Katz, Activation of a biocatalitic electrode by removing glucose oxidase from the surface – Application to signal triggered drug release, ACS Appl. Mater. Interfaces 6 (2014), pp. 13349–13354.10.1021/am504561d
  • C.M. Gamella, N. Guz, J.M. Pingarrón, R. Aslebagh, C.C. Darie, and E. Katz, Bioelectronic system for insulin release triggered by ketone body mimicking diabetic ketoacidosis in vitro, Chem. Commun. 51 (2015), pp. 7618–7621.10.1039/C5CC01498K
  • S. Gargiulo, I.W.C.E. Arends, and F. Hollmann, A photo-enzymatic system for alcohol oxidation, ChemCatChem 3 (2011), pp. 338–342.10.1002/cctc.201000317
  • A.A. Green, P.A. Silver, J.J. Collins, and P. Yin, Toehold Switches: De-novo-designed regulators of gene expression, Cell 159 (2014), pp. 925–939.10.1016/j.cell.2014.10.002
  • N. Guz, J. Halámek, J. Rusling, and E. Katz, A biocatalytic cascade with several output signals – Towards biosensors with different levels of confidence, Anal. Bioanal. Chem. 406 (2014), pp. 3365–3370.10.1007/s00216-014-7789-5
  • N. Guz, T.A. Fedotova, B.E. Fratto, O. Schlesinger, L. Alfonta, D. Kolpashchikov, and E. Katz, Bioelectronic interface connecting reversible logic gates based on enzyme and DNA reactions, ChemPhysChem (in press ), doi: 10.1002/cphc.201600129.
  • B. Haefliger, L. Prochazka, B. Angelici, and Y. Benenson, Percision Multidimensional assay for high-throughput microRNA drug discovery, Nat. Commun. 7 (2016), pp. 10709.
  • J. Halámek, V. Bocharova, M.A. Arugula, G. Strack, V. Privman, and E. Katz, Realization and properties of biochemical-computing biocatalytic XOR gate based on enzyme inhibition by a substrate, J. Phys. Chem. B 115 (2011), pp. 9838–9845.10.1021/jp2041372
  • J. Halámek, J. Zhou, L. Halámková, V. Bocharova, V. Privman, J. Wang, and E. Katz, Biomolecular filters for improved separation of output signals in enzyme logic systems applied to biomedical analysis, Anal. Chem. 83 (2011), pp. 8383–8386.10.1021/ac202139m
  • J. Halámek, O. Zavalov, L. Halámková, S. Korkmaz, V. Privman, and E. Katz, Enzyme-based logic analysis of biomarkers at physiological concentrations: AND gate with double-sigmoid ‘filter’ response, J. Phys. Chem. B 116 (2012), pp. 4457–4464.10.1021/jp300447w
  • Z.W. Huan, B. Persson, L. Gorton, S. Sahni, T. Skotheim, and P. Bartlett, Redox polymers for electrocatalytic oxidation of NADH – Cationic styrene and ethylenimine polymers, Electroanalysis 8 (1996), pp. 575–581.10.1002/(ISSN)1521-4109
  • Z. Jin, G. Güven, V. Bocharova, J. Halámek, I. Tokarev, S. Minko, A. Melman, D. Mandler, and E. Katz, Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode, ACS Appl. Mater. Interfaces 4 (2012), pp. 466–475.
  • M. Kahan, B. Gil, R. Adar, and E. Shapiro, Towards molecular computers that operate in a biological environment, Physica D 237 (2008), pp. 1165–1172.10.1016/j.physd.2008.01.027
  • I. Katakis and E. Dominguez, Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors, Mikrochim. Acta 126 (1997), pp. 11–32.10.1007/BF01242656
  • E. Katz (ed.), Molecular and biomolecular information processing systems. Isr. J. Chem. 51 (2011), Issue 1 and review articles wherein; b) Katz E. (ed.), Molecular and Supramolecular Information Processing – From Molecular Switches to Logic Systems, Wiley-VCH, Weinheim, 2012.
  • E. Katz (ed.), Biomolecular Computing – From Logic Systems to Smart Sensors and Actuators, Willey-VCH, Weinheim, 2012.
  • E. Katz, Biocomputing – Tools, aims, perspectives, Cur. Opin. Biotechnol. 34 (2015), pp. 202–208.10.1016/j.copbio.2015.02.011
  • E. Katz (ed.), Forensic science: A multidisciplinary approach, Wiley-VCH, Weinheim, 2016.
  • E. Katz and S. Minko, Enzyme-based logic systems interfaced with signal-responsive materials and electrodes, Chem. Commun. 51 (2015), pp. 3493–3500.10.1039/C4CC09851J
  • E. Katz and V. Privman, Enzyme-based logic systems for information processing, Chem. Soc. Rev. 39 (2010), pp. 1835–1857.10.1039/b806038j
  • E. Katz, T. Lötzbeyer, D.D. Schlereth, W. Schuhmann, and H.L. Schmidt, Electrocatalytic oxidation of reduced nicotinamide coenzymes at gold and platinum electrode surfaces modified with a monolayer of pyrroloquinoline quinone. Effect of Ca2+ cations, J. Electroanal. Chem. 373 (1994), pp. 189–200.10.1016/0022-0728(94)03328-5
  • E. Katz, J. Wang, M. Privman, and J. Halámek, Multi-analyte digital enzyme biosensors with built-in Boolean logic, Anal. Chem. 84 (2012), pp. 5463–5469.
  • E. Katz, J.M. Pingarrón, S. Mailloux, N. Guz, M. Gamella, G. Melman, and A. Melman, Substance release triggered by biomolecular signals in bioelectronic systems, J. Phys. Chem. Lett. 6 (2015), pp. 1340–1347.10.1021/acs.jpclett.5b00118
  • J.P. Klein, T.H. Leete, and H. Rubin, A biomolecular implementation of logically reversible computation with minimal energy dissipation, Biosystems 52 (1999), pp. 15–23.10.1016/S0303-2647(99)00028-3
  • R.C.H. Kwan, P.Y.T. Hon, K.K.W. Mak, and R. Renneberg, Amperometric determination of lactate with novel trienzyme / poly(carbamoyl) sulfonate hydrogel-based sensor, Biosens. Bioelectron. 19 (2004), pp. 1745–1752.10.1016/j.bios.2004.01.008
  • R. Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5 (1961), pp. 183–191.10.1147/rd.53.0183
  • R. Landauer, Fundamental limitations in the computational process, Berichte der Bunsengesel/schaft fuer Physikalische Chemie 80 (1976), pp. 1041–1256.
  • D. Lebender and F.W. Schneider, Logical gates using a nonlinear chemical reaction, J. Phys. Chem. 98 (1994), pp. 7533–7537.10.1021/j100082a023
  • K. MacVittie, J. Halámek, V. Privman, and E. Katz, A bioinspired associative memory system based on enzymatic cascades, Chem. Commun. 49 (2013), pp. 6962–6964.10.1039/c3cc43272f
  • S. Mailloux, N. Guz, A. Zakharchenko, S. Minko, and E. Katz, Majority and minority gates realized in enzyme-biocatalyzed systems integrated with logic networks and interfaced with bioelectronic systems, J. Phys. Chem. B 118 (2014), pp. 6775–6784.10.1021/jp504057u
  • L. Marquez and B. Dunford, Mechanism of the oxidation of 3,5,3′,5′-tetramethylbenzidine by myeloperoxidase determined by transient and steady-state kinetics, Biochemistry 36 (1997), pp. 9349–9355.10.1021/bi970595j
  • P.L. Meisenheimer, M.A. O’Brien, and J.J. Cali, Promega notes, Luminogenic enzyme substrates: the basis for a new paradigm in assay design 100 (2008), pp. 22–26.
  • N.D. Mermin, Quantum Computer Science: An Introduction, Cambridge University Press, Cambridge, 2007.10.1017/CBO9780511813870
  • F. Moseley, J. Halamek, F. Kramer, A. Poghossian, M.J. Schöning, and E. Katz, Enzyme-based reversible CNOT logic gate realized in a flow system, Analyst 139 (2014), pp. 1839–1842.10.1039/c4an00133h
  • J.M. Obon, P. Casanova, A. Manjon, V.M. Fernandez, and J.L. Iborra, Stabilization of glucose dehydrogenase with poly-ethyleneimine in an electrochemical reactor with NAD(P)+ regeneration, Biotechnol. Prog. 13 (1997), pp. 557–561.10.1021/bp970063u
  • R. Orbach, F. Remacle, R.D. Levine, and I. Willner, Logic reversibility and thermodynamic irreversibility demonstrated by DNAzyme-based Toffoli and Fredkin logic gates, Proc. Nat. Acad. U.S.A. 109 (2012), pp. 21228–21233.10.1073/pnas.1219672110
  • R.J. Pei, E. Matamoros, M.H. Liu, D. Stefanovic, and M.N. Stojanovic, Training a molecular automaton to play a game, Nat. Nanotechnol. 5 (2010), pp. 773–777.10.1038/nnano.2010.194
  • E. Perez-Inestrosa, J.M. Montenegro, D. Collado, R. Suau, and J. Casado, Molecules with multiple light-emissive electronic excited states as a strategy towards molecular reversible logic gates, J. Phys. Chem. C 111 (2007), pp. 6904–6909.10.1021/jp071566d
  • D.J. Pike, N. Kapur, P.A. Millner, and D.I. Stewart, Flow cell design for effective biosensing, Sensors 13 (2013), pp. 58–70.
  • U. Pischel. Advanced molecular logic with memory function, Angew. Chem. Int. Ed. 49 (2010), pp. 1356–1358.
  • U. Pischel, J. Andreasson, D. Gust, and V.F. Pais. Information processing with molecules – Quo vadis?, ChemPhysChem 14 (2013), pp. 28–46.
  • V. Privman and E. Katz, Can bio-inspired information processing steps be realized as synthetic biochemical processes?, Phys. Status Solidi A 212 (2015), pp. 219–228.10.1002/pssa.v212.2
  • V. Privman, M.A. Arugula, J. Halámek, M. Pita, and E. Katz, Network analysis of biochemical logic for noise reduction and stability: A system of three coupled enzymatic AND gates, J. Phys. Chem. B 113 (2009), pp. 5301–5310.10.1021/jp810743w
  • V. Privman, J. Zhou, J. Halámek, and E. Katz, Realization and properties of biochemical-computing biocatalytic XOR gate based on signal change, J. Phys. Chem. B 114 (2010), pp. 13601–13608.10.1021/jp107562p
  • V. Privman, B.E. Fratto, O. Zavalov, J. Halámek, and E. Katz, Enzymatic AND logic gate with sigmoid response induced by photochemically controlled oxidation of the output, J. Phys. Chem. B 117 (2013), pp. 7559–7568.
  • V. Privman, O. Zavalov, L. Halámková, F. Moseley, J. Halámek, and E. Katz, Networked enzymatic logic gates with filtering: New theoretical modelling expressions and their experimental application, J. Phys. Chem. B 117 (2013), pp. 14928–14939.
  • J. Pütter and R. Becker, in Methods of Enzymatic Analysis, 3rd ed., Vol. III, H.U. Bergmeyer, ed., Deerfield Beach, Chemie, 1983, pp. 286–293.
  • L. Qian, E. Winfree, and J. Bruck, Neural network computation with DNA strand displacement cascades, Nature 475 (2011), pp. 368–372.10.1038/nature10262
  • H.A. Reeve, L. Lauterbach, P.A. Ash, O. Lenz, and K.A. Vincent, A modular system for regeneration of NAD cofactors using graphite particles modified with hydrogenase and diaphorase moieties, Chem. Commun. 48 (2012), pp. 1589–1591.10.1039/C1CC14826E
  • P. Remón, R. Ferreira, J.M. Montenegro, R. Suau, E. Perez-Inestrosa, and U. Pischel, Reversible molecular logic: A photophysical example of a Feynman gate, ChemPhysChem 10 (2009), pp. 2004–2007.
  • P. Remón, M. Hammarson, S. Li, A. Kahnt, U. Pischel, and J. Andreasson, Molecular implementation of sequential and reversible logic through photochromic energy transfer switching, Chem. Eur. J. 17 (2011), pp. 6492–6500.10.1002/chem.201100027
  • J.L. Rickus, P.L. Chang, A.J. Tobin, J.I. Zink, and B. Dunn, Photochemical coenzyme regeneration in an enzymatically active optical material, J. Phys. Chem. B 108 (2004), pp. 9325–9332.10.1021/jp038051g
  • K. Rinaudo, L. Bleris, R. Maddamsetti, S. Subramanian, R. Weiss, and Y. Benenson, A universal RNAi-based logic evaluator that operates in mammalian cells, Nat. Biotechnol. 25 (2007), pp. 795–801.
  • R.A. Rincon, C. Lau, K.E. Garcia, and P. Atanassov, Flow-through 3D biofuel cell anode for NAD+-dependent enzymes, Electrochim. Acta 56 (2011), pp. 2503–2509.10.1016/j.electacta.2010.11.041
  • J. Rocha-Martin, D. Vega, J.M. Bolivar, C.A. Godoy, and K.A. Vincent, A. Hidalgo, J. Berenguer, J.M. Guisan, and F. Lopez-Gallego, New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme. BMC Biotechnol. 11 (2011):No. 101.
  • S. Roy and M. Prasad, Novel proposal for all-optical Fredkin logic gate with bacteriorhodopsin-coated microcavity and its applications, Opt. Eng. 49 (2010), p. 065201.10.1117/1.3449114
  • K.T. Roybal, L.J. Rupp, L. Morsut, W.J. Walker, K.A. McNally, J.S. Park, and W.A. Lim, Percision tumor recognition by T cells with combinatorial antigen-sensing circuits, Cell 164 (2016), pp. 770–779.
  • I. Schröder, E. Steckhan, and A. Liese, In situ NAD regeneration using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator, J. Electroanal. Chem. 541 (2003), pp. 109–115.10.1016/S0022-0728(02)01420-1
  • K. Scida, B.L. Li, A.D. Ellington, and R.M. Crooks, DNA detection using origami paper analytical devices, Anal. Chem. 85 (2013), pp. 9713–9720.10.1021/ac402118a
  • A. Sharma, Photolytic oxidation of reduced nicotinamide adenine dinucleotide, Spectrochim. Acta A 48 (1992), pp. 893–897.10.1016/0584-8539(92)80086-C
  • A. Sharma and M.A. Arnold, Fluorescence quenching of thionine by reduced nicotinamide adenine dinucleotide, Spectrochim. Acta A 48 (1992), pp. 647–651.10.1016/0584-8539(92)80209-F
  • Sigma Chemical Company, Bioluminescent determination of ATP with luciferase-luciferin. Technical bulletin No. BL-100, 1991. Avaiable at http:// www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/ Bulletin/fle1000bul.pdf
  • A.P. de Silva, Molecular logic and computing, Nat. Nanotechnol. 2 (2007), pp. 399–410.10.1038/nnano.2007.188
  • A.P. de Silva. Molecular Logic-based Computation, Royal Society of Chemistry, Cambridge, 2013.
  • R. Stadler, S. Ami, C. Joachim, and M. Forshaw, Integrating logic functions inside a single molecule, Nanotechnology 15 (2004), pp. S115–S121.10.1088/0957-4484/15/4/001
  • M.N. Stojanovic and D. Stefanovic, Deoxyribozyme-based half-adder, J. Am. Chem. Soc. 125 (2003), pp. 6673–6676.10.1021/ja0296632
  • M.N. Stojanovic and D. Stefanovic, Chemistry at a higher level of abstraction, J. Comput. Theor. Nanosci. 8 (2011), pp. 434–440.10.1166/jctn.2011.1707
  • M.N. Stojanovic, D. Stefanovic, and S. Rudchenko, Exercises in molecular computing, Acc. Chem. Res. 47 (2014), pp. 1845–1852.10.1021/ar5000538
  • G. Strack, M. Pita, M. Ornatska, and E. Katz, Boolean logic gates using enzymes as input signals, ChemBioChem 9 (2008), pp. 1260–1266.
  • G. Strack, M. Ornatska, M. Pita, and E. Katz, Biocomputing security system: Concatenated enzyme-based logic gates operating as a biomolecular keypad lock, J. Am. Chem. Soc. 130 (2008), pp. 4234–4235.10.1021/ja7114713
  • A.D. Stroock and G.M. Whitesides, Controlling flows in microchannels with patterned surface charge and topography, Acc. Chem. Res. 36 (2003), pp. 597–604.10.1021/ar0202870
  • K. Szacilowski. Digital information processing in molecular systems, Chem. Rev. 108 (2008), pp. 3481–3548.
  • K. Szacilowski, Infochemistry, Wiley, Chichester, 2012.10.1002/9780470710883
  • N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, Reversible logic gate using adiabetic superconducting devices, Sci. Rep. 4 (2014), No. 6354.10.1038/srep06354
  • M.W. Toepke, V.V. Abhyankar, and D.J. Beebe, Microfluidic logic gates and timers, Lab Chip 7 (2007), pp. 1449–1453.10.1039/b708764k
  • Toffoli T. Reversible computing. Technical Memo MIT/LCS/TM-151, MIT Laboratory for Computer Science (February 1980). An abridged version of this paper appeared under the same title in Seventh Colloquium on Automata, Languages and Programming, J. W. de Bakker and J. van Leeuwen, eds. Springer, Berlin, 1980, pp. 632–644.
  • C.S. Tsai and Q. Chen, Purification and kinetic characterization of hexokinase and glucose-6-phosphate dehydrogenase from Schizosaccharomyces pombe, Biochem. Cell Biol. 76 (1998), pp. 107–113.10.1139/o98-001
  • R. Unger and J. Moult, Towards computing with proteins, Proteins 63 (2006), pp. 53–64.
  • P. Velasco, R. Barcia, I. Ibarguren, A.M. Sieiro, and J.I. Ramos-Martinez, Purification, characterization and kinetic mechanism of glucose-6-phosphate dehydrogenase from mouse liver, Int. J. Biochem. 26 (1994), pp. 195–200.10.1016/0020-711X(94)90145-7
  • A. Verma, B. Fratto, V. Privman, and E. Katz, Design of flow systems for improved networking and reduced noise in biomolecular signal processing in biocomputing and biosensing applications. Sensors (2016); article # 1042.
  • I. Willner and D. Mandler, Enzyme catalysed biotransformations through photochemical regeneration of nicotinamide cofactors, Enzyme Microb. Technol. 11 (1989), pp. 467–483.10.1016/0141-0229(89)90027-6
  • S. Xu, Y. Hao, W. Sun, C. Fang, X. Lu, M. Li, M. Zhao, S. Peng, and C. Yan, 2:1 multiplexing function from a simple molecular system, Sensors 12 (2012), pp. 4421–4430.10.3390/s120404421
  • C.N. Yang, Y.L. Chen, H.Y. Lin, and C.Y. Hsu, An optical deoxyribonucleic acid-based half-subtractor, Chem. Commun. 49 (2013), pp. 8860–8862.10.1039/c3cc44823a
  • P.R. Yelekar and S. Sujata, Introduction to reversible logic gates & its application, 2nd NationalConference on Information and Communication Technology, Nagpur, Maharashtra, 2011, pp. 5–9.
  • O. Zavalov, V. Bocharova, V. Privman, and E. Katz, Enzyme-based logic: OR gate with double-sigmoid filter response, J. Phys. Chem. B 116 (2012), pp. 9683–9689.10.1021/jp305183d
  • J. Zhou, M.A. Arugula, J. Halámek, M. Pita, and E. Katz, Enzyme-based NAND and NOR logic gates with modular design, J. Phys. Chem. B 113 (2009), pp. 16065–16070.10.1021/jp9079052
  • C. Zhou, K. Wang, D. Fan, C. Wu, D. Liu, Y. Liu, and E. Wang, An enzyme-free and DNA-based Feynman gate for logically reversible operation, Chem. Commun. 51 (2015), pp. 10284–10286.10.1039/C5CC02865E

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.