206
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Energy harvesting modelling for self-powered fitness gadgets: a feasibility study

&
Pages 412-429 | Received 06 Jun 2017, Accepted 26 Nov 2017, Published online: 06 Dec 2017

References

  • Greene K . Technological innovation and economic progress in the ancient world: M. I. finley re-considered. Econ History Rev. 2000;53(1):29–59.
  • Abdin Z , Alim M , Saidur R , et al . Solar energy harvesting with the application of nanotechnology. Renew Sustainable Energy Rev. 2013;26:837–852.
  • Alippi C , Galperti C . An adaptive system for optimal solar energy harvesting in wireless sensor network nodes. IEEE Trans Circuits Syst I: Regul Pap. July 2008;55(6):1742–1750.
  • Hande A , Polk T , Walker W , et al . Indoor solar energy harvesting for sensor network router nodes. Microprocessors Microsys. 2007;31(6):420–432. special Issue on Sensor Systems.
  • Subendran P , Viswanath SK , Yuen C , et al . Adaptive transmission for self-sustainable energy harvesting wireless sensor network. In: International Conference on Frontiers of Communications, Networks and Applications (ICFCNA 2014 -- Malaysia); Nov 2014. p. 1–5.
  • Yang Y , Zhu G , Zhang H , et al . Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano. 2013;7(10):9461–9468.
  • Porcarelli D , Spenza D , Brunelli D , et al . Adaptive rectifier driven by power intake predictors for wind energy harvesting sensor networks. IEEE J Emerg Sel Top Power Electron. June 2015;3(2):471–482.
  • Meng XS , Zhu G , Wang ZL . Robust thin-film generator based on segmented contact-electrification for harvesting wind energy. ACS Appl Mater Interfaces. 2014;6(11):8011–8016.
  • Zareei S , Deng JD . Energy management policy for fitness gadgets: a case study of human daily routines. In: 2016 26th International Telecommunication Networks and Applications Conference (ITNAC); Dec 2016. p. 13–18; Dunedin, New Zealand.
  • von Buren T , Mitcheson PD , Green TC , et al . Optimization of inertial micropower generators for human walking motion. IEEE Sens J. Feb 2006;6(1):28–38.
  • Yun J , Patel SN , Reynolds MS , et al . Design and performance of an optimal inertial power harvester for human-powered devices. IEEE Trans Mobile Comput. 2011;10(5):669–683.
  • Gorlatova M , Sarik J , Grebla G , et al . Movers and shakers: kinetic energy harvesting for the internet of things. In: The 2014 ACM International Conference on Measurement and Modeling of Computer Systems ser. SIGMETRICS ’14. ACM; 2014. p. 407–419; Austin, Texas, USA.
  • Zhang S , Seyedi A . A Markovian model for harvested power from human motion. In: Proceedings of the 8th International Conference on Body Area Networks, ser. BodyNets ’13; 2013. p. 383–389; Boston, Massachusetts.
  • Margolies R , Gorlatova M , Sarik J , et al . Energy-harvesting active networked tags (EnHANTs): prototyping and experimentation. ACM Trans Sen Netw. 2015;11(4):62:1–62:27.
  • Ylli K , Hoffmann D , Willmann A , et al . Energy harvesting from human motion: exploiting swing and shock excitations. Smart Mater Struct. 2015;24(2):025029.
  • Berdy D , Valentino D , Peroulis D . Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester. Sens Actuators A. 2015;222:262–271.
  • Cao J , Wang W , Zhou S , et al . Nonlinear time-varying potential bistable energy harvesting from human motion. Appl Phys Lett. 2015;107(14):143904.
  • Dionisi A , Marioli D , Sardini E , et al . Autonomous wearable system for vital signs measurement with energy-harvesting module. IEEE Trans Instrum Meas. June 2016;65(6):1423–1434.
  • Geisler M , Boisseau S , Perez M , et al . Human-motion energy harvester for autonomous body area sensors. Smart Mater Struct. 2017;26(3):035028.
  • Wan ZG , Tan YK , Yuen C . Review on energy harvesting and energy management for sustainable wireless sensor networks. In: 2011 IEEE 13th International Conference on Communication Technology; Sept 2011. p. 362–367; Jinan, China.
  • Starner T . Human-powered wearable computing. IBM Syst J. 1996;35(3.4):618–629.
  • Yeatman EM . Advances in power sources for wireless sensor nodes. In: Proceedings of International Workshop on Wearable and Implantable Body Sensor Networks; 2004. p. 20–21.
  • Akhtar F , Rehmani MH . Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review. Renew Sustainable Energy Rev. 2015;45(suppl C):769–784.
  • Chen X , Yuen C , Zhang Z . Wireless energy and information transfer tradeoff for limited-feedback multiantenna systems with energy beamforming. IEEE Trans Veh Technol. Jan 2014;63(1):407–412.
  • Strasser M , Aigner R , Franosch M , et al . Miniaturized thermoelectric generators based on poly-si and poly-sige surface micromachining. Sens Actuators A. 2002;97:535–542.
  • Mitcheson PD , Green TC , Yeatman EM , et al . Architectures for vibration-driven micropower generators. J Microelectromech Syst. June 2004;13(3):429–440.
  • Garca P , Torreglosa JP , Ferndez LM , et al . Optimal energy management system for stand-alone wind turbine/photovoltaic/hydrogen/battery hybrid system with supervisory control based on fuzzy logic. Int J Hydrogen Energy. 2013;38(33):14146–14158.
  • Chalermthai B , Sada N , Sarfraz O , et al. Recovery of useful energy from lost human power in gymnasium. 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). June 2015; Rome, Italy.
  • Sukumaran SK , Purushothaman M . An approach in energy harvesting from fitness equipment. 2014 International Conference on Science Engineering and Management Research (ICSEMR). Nov 2014; Chennai, India.
  • Gaurav H , Nikhurpa KS , Chaudhary D , et al . Energy harvesting through smart gym. Int J Electr Electron Eng Telecommun. 2015;1(2)37–42.
  • Williams C , Yates R . Analysis of a micro-electric generator for microsystems. Sens Actuators A. 1996;52(1):8–11.
  • Gorlatova M , Zapas M , Xu E , et al . CRAWDAD dataset columbia/enhants (v. 2011-04-07). Apr. 2011. https://doi.org/10.15783/C77P47
  • LOCOSYS GPS Receiver -- LS20031 5Hz (66 Channel). [cited 2016 June 11]. Available from: https://www.sparkfun.com/products/8975
  • Ngo TT , Makihara Y , Nagahara H , et al . The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recogn. 2014;47(1):228–237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.