93
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Design of slime-mold-inspired multi-layered single-electron circuit

&
Pages 400-411 | Received 15 Sep 2017, Accepted 24 Nov 2017, Published online: 14 Dec 2017

References

  • Lagally ET , Medintz I , Mathies RA . Single-molecule DNA amplification and analysis in an integrated microfluidic device. Anal Chem. 2001;73:565–570.
  • Bogani L , Wernsdorfer W . Molecular spintronics using single-molecule magnets. Nat Mater. 2008;7:179–186.
  • Nirschl T , Wang P-F , Weber C , et al . The tunneling field effect transistor (TFET) as an add-on for ultra-low-voltage analog and digital processes. In: IEDM Technical Digest. IEEE International Electron Devices Meeting; 2004. p. 195–198. DOI:10.1109/IEDM.2004.1419106
  • Dewey G , Chu-Kung B , Boardman J , et al . Fabrication, characterization, and physics of III-V heterojunction tunneling Field Effect Transistors (H-TFET) for steep sub-threshold swing. In: 2011 International Electron Devices Meeting; 2011. p. 33.6.1–33.6.4. DOI:10.1109/IEDM.2011.6131666
  • Prati E , Kumagai K , Hori M , et al . Band transport across a chain of dopant sites in silicon over micron distances and high temperatures. Sci Rep. 2016;6: Article number: 19704 (8 p).
  • Safiruddin S , Cotofana S , Peper F . Stigmergic search with Single Electron Tunneling technology based Memory Enhanced Hubs. In: Proceedings of the 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH); 2012. p. 174–180. DOI:10.1145/2765491.2765523
  • Michler P , Kiraz A , Becher C , et al . A quantum dot single-photon turnstile device. Science. 2000;290:2282–2285.
  • Cheng Y , Gamba IM , Majorana A , et al . A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices. Comput Methods Appl Mech Eng. 2009;198:3130–3150.
  • Yang JJ , Pickett MD , Li X , et al . Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol. 2008;3:429–433.
  • Hayashi S , Oya T . Collision-based computing using single-electron circuits. Jpn J Appl Phys. 2012;51:06FE11_1–06FE11_5.
  • Murakami Y , Oya T . Study of two-dimensional, device-error-redundant single-electron oscillators system. Proc SPIE Nanoeng Fab Prop Opt Devices IX. 2012;8463:84631E_1–84631E_8.
  • Shinde Y , Oya T . Design of single-electron ‘slime-mold’ circuit and its application to solving optimal path planning problem. Nonlinear Theory Appl. 2014;IEICE 5:80–88.
  • Fujino H , Oya T . Analysis of electron transfer among quantum dots in two-dimensional quantum dot network. Jpn J Appl Phys. 2014;53:06JE02_1–06JE02_5.
  • Satomi K , Asai T , Oya T . Design of single-electron ‘slime mold’ circuit for single-molecule device. Int Chem Congr Pac Basin Soc. 2015;Pacifichem 2015(2015):MTLS 1085.
  • Hirashima R , Oya T . Design of thermal-noise-harnessing single-electron circuit for efficient signal propagation. Jpn J Appl Phys. 2016;55:06GG10_1–06GG10_8.
  • Takano M , Asai T , Oya T . Design and evaluation of single-electron associative memory circuit. Int J Parallel Emergent Distrib Syst. 2017;32:259–270.
  • Camp WG . A method of cultivating myxomycete plasmodia. Bull Torrey Bot Club. 1936;63:205–210.
  • Schaap P , Wang M . The possible involvement of oscillatory cAMP signaling in multicellular morphogenesis of the cellular slime molds. Dev Biol. 1984;105:470–478.
  • North MJ , Cotter DA . Regulation of cysteine proteinases during different pathway of differentiation in cellular slime molds. Dev Genet. 1991;12:154–162.
  • Halloy J , Lauzeral J , Goldbeter A . Modeling oscillations and waves of cAMP in Dictyostelium discoideum cells. Biophys Chem. 1998;72:9–19.
  • Nakagaki T , Yamada H , Ágota T . Intelligence: Maze-solving by an amoeboid organism. Nature. 2000;407:470.
  • Ricigliano V , Chitaman J , Tong J , et al . Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum. Front Microbiol. 2015;6:720_1–720_10.
  • Schumann A , Pancerz K , Adamatzky A , et al . Bio-inspired game theory: the case of physarum polycephalum. In: Proceedings of the 8th International Conference on Bioinspired Information and Communications Technologies; 2014. p. 9–16. DOI:10.4108/icst.bict.2014.257869
  • Adamatzky A . Slime mold solves maze in one pass ... assisted by gradient of chemo-attractants. IEEE Trans Nanobiosci. 2012;11:131–134.
  • Adamatzky A , Armstrong R , Jones J , et al . On creativity of slime mould. Int J Gen Syst. 2013;42:441–457.
  • Tero A , Takagi S , Saigusa T , et al . Rules for biologically inspired adaptive network design. Science. 2010;327:439–442.
  • Aono M , Naruse M , Kim S-J , et al . Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics. Langmuir. 2013;29:7557–7564.
  • Aono M , Kasai S , Kim S-J , et al . Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets. Nanotechnology. 2015;26:234001_1–234001_8.
  • Ikebe M , Kitauchi Y . Evaluation of a multi-path maze-solving cellular automata by using a virtual slime-mold model. In: Adamatzky A , Costello BDL , Bull L , Stepney S , Teuscher C , editors. Unconventional computing 2007. Luniver Press; 2007. p. 238–249. ISBN: 978-1905986057.
  • Kasai S , Aono M , Naruse M . Amoeba-inspired computing architecture implemented using charge dynamics in parallel capacitance network. Appl Phys Lett. 2013;103: Article number: 163703 (4 p).
  • Oya T , Asai T , Fukui T , et al . Reaction-diffusion systems consisting of single-electron circuits. Int J Unconv Comput. 2005;1:177–194.
  • Oya T . Novel functional nonlinear nanodevices. In: Proceedings of the 2015 International Symposium on Nonlinear Theory and its Applications (NOLTA2015); 2015. p. 781–784. Available from: http://www.ieice.org/nolta/symposium/archive/2015/articles/C2L-A4-6107.pdf
  • Mimura M , Sakaguchi H , Matsushita M . Reaction-diffusion modelling of bacterial colony patterns. Physica A. 2000;282:283–303.
  • Oya T , Motoike IN , Asai T . Single-electron circuits performing dendritic pattern formation with nature-inspired cellular automata. Int J Bifurcation Chaos. 2007;17:3651–3655.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.