216
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

A spatially explicit integrative model for estimating the risk of wildfire impacts in New-Caledonia

, , , , &
Pages 37-52 | Received 29 Mar 2017, Accepted 17 Jan 2018, Published online: 01 Feb 2018

References

  • Jaffre T, Morat P, Veillon JM, et al. Changements dans la végétation de la Nouvelle-Calédonie au cours du tertiaire: la végétation et la flore des roches ultrabasiques. Bulletin du Muséum national d’Histoire naturelle. Section B. 1988;9:365–391.
  • Morat P, Jaffré T, Tronchet F, et al. Le référentiel taxonomique Florical et les caractéristiques de la flore vasculaire indigène de la Nouvelle-Calédonie. Adansonia. 2012;34:179–221. Available from: http://www.documentation.ird.fr/hor/fdi:010058851
  • Stevenson J. A late-Holocene record of human impact from the southwest coast of New Caledonia. Holocene. 2004;14:888–898. DOI:10.1191/0959-683604hl755rp
  • Stott P. Combustion in tropical biomass fires: a critical review. Prog Phys Geogr. 2000;24:355–377. DOI:10.1177/030913330002400303
  • Ibanez T, Hély C, Gaucherel C. Sharp transitions in microclimatic conditions between savanna and forest in New Caledonia: Insights into the vulnerability of forest edges to fire. Austral Ecol. 2013;38:680–687. DOI:10.1111/aec.12015/abstract
  • Hely C, INC. INC: Incendies et biodiversité des écosystèmes en Nouvelle-Calédonie. Projet ANR-07-BDIV-08. Programme BDIV 2007. 2012. Available from: oeil.nc/cdrn/index.php/files/bibliographie/9690
  • Gomez C, Mangeas M, Curt T, et al. Wildfire risk for main vegetation units in a biodiversity hotspot: modeling approach in new caledonia, south pacific. Ecol Evol. 2015;5:377–390. DOI:10.1002/ece3.1317
  • Finney MA. An overview of flammap fire modeling capabilities. Conference Proceedings. Fire Station, Portland, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station; 2006. p. 213–220. Available from: https://www.treesearch.fs.fed.us/pubs/25948
  • Myers N, Mittermeier RA, Mittermeier CG, et al. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. Available from: http://www.nature.com/nature/journal/v403/n6772/full/403853a0.html
  • Mittermeier RA, Turner WR, Larsen FW, et al. Global biodiversity conservation: the critical role of hotspots. Biodiver Hotspots. 2011;1:3–22.
  • Giglio L, Loboda T, Roy DP, et al. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens Environ. 2009;113:408–420. Available from: http://www.sciencedirect.com/science/article/pii/S0034425708003180
  • Bernier PY, Gauthier S, Jean PO, et al. Mapping local effects of forest properties on fire risk across canada. Forests. 2016;7. Available from: http://www.mdpi.com/1999-4907/7/8/157
  • Wagner CEV. Development and structure of the canadian forest fireweather index system. Can For Serv Forestry Tech Rep. 1987;35:1–49.
  • Didelez V. Causality: models, reasoning and inference. Judea Pearl: Cambridge University Press, New York (NY); 2000. No. of pages: 384. Price: $39.95$. ISBN 0-521-77362-8, Statistics Med. 2002;21:2292--2293. DOI:10.1002/sim.1006/abstract
  • Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Mach Learn. 1997;29:131–163. Available from: http://link.springer.com/article/10.1023/A:1007465528199
  • Darwiche A. Modeling and reasoning with Bayesian networks. Cambridge University Press; 2009. Available from: https://books.google.com/books?id=HsGrXdZMXg4C
  • Aggarwal, Charu C. Managing and mining uncertain data. Boston (MA): Springer; 2009. p. 36. chap. 1.
  • Chen R, Herskovits EH. A Bayesian network classifier with inverse tree structure for voxelwise magnetic resonance image analysis. Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05. New York, NY, USA: ACM; 2005. p. 4–12. DOI:10.1145/1081870.1081875
  • Nelder JA, Wedderburn RWM. Generalized linear models. J R Stat Soc Ser A (General). 1972;135:370–384. Available from: http://www.jstor.org/stable/2344614
  • Rokach L. Data mining with decision trees: theory and applications. World Scientific; 2008. Available from: https://books.google.it/books?id=GlKIIR78OxkC
  • Vapnik VN. The nature of statistical learning theory. New York (NY): Springer-Verlag; 1995.
  • Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinf. 2006;7:91–98.
  • Morris MD. Factorial sampling plans for preliminary computational experiments. Technometrics. 1991;33:161–174. Available from: http://www.jstor.org/stable/1269043
  • Campolongo F, Cariboni J, Saltelli A. An effective screening design for sensitivity analysis of large models. Environ Model Softw. 2007;22:1509–1518. DOI:10.1016/j.envsoft.2006.10.004
  • Finney MA. Fire growth using minimum travel time methods. Can J Forest Res. 2002;32:1420–1424. DOI:10.1139/x02-068
  • Finney M. FARSITE: fire area simulator – model devel opment and evaluation. USDA For. 1998;47:1–52.
  • Finney MA. The challenge of quantitative risk analysis for wildland fire. Forest Ecol Manag. 2005;211:97–108.
  • Whelan R. The Ecology of fire. Cambridge University Press; 1995. Available from: https://books.google.com/books?id=AK2zCMbXJrQC
  • Dlamini WM. A bayesian belief network analysis of factors influencing wildfire occurrence in swaziland. Environ Model Software. 2010;25:199–208. Available from: http://www.sciencedirect.com/science/article/pii/S1364815209002035
  • Archibald S, Roy DP, Van Wilgen BW, et al. What limits fire? an examination of drivers of burnt area in southern africa. Global Change Biol. 2009;15:613–630. DOI:10.1111/j.1365-2486.2008.01754.x
  • Dlamini WM. Application of bayesian networks for fire risk mapping using gis and remote sensing data. GeoJournal. 2011;76:283–296. Available from: http://www.jstor.org/stable/41148456
  • Jahdi R, Salis M, Darvishsefat AA, et al. Evaluating fire modelling systems in recent wildfires of the golestan national park, iran. Forestry Int J Forest Res. 2016;89:136–149. DOI:10.1093/forestry/cpv045
  • Moron V, Barbero R, Mangeas M, et al. Prediction of september-december fire in new caledonia (southwestern pacific) using july nino-4 sea surface temperature index. J Appl Meteorol Climatol. 2013;52:623–633.
  • Dumas P, Toussaint M, Herrenschmidt J, et al. Le risque de feux de brousse sur la grande terre de nouvelle-calédonie: l’homme responsable, mais pas coupable. Revue Géographique de l’Est. 2013;53. Available from: http://rge.revues.org/4598
  • Estes BL, Knapp EE, Skinner CN, et al. Factors influencing fire severity under moderate burning conditions in the klamath mountains, northern california. USA, Ecosphere. 2017;8:e01794–n/a. DOI:10.1002/ecs2.1794
  • Holden ZA, Morgan P, Evans JS. A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern US wilderness area. Forest Ecol Manage. 2009;258:2399–2406. Available from: http://www.sciencedirect.com/science/article/pii/S0378112709005799

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.