1,412
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Digital twin deployment for smart agriculture in Cloud-Fog-Edge infrastructure

, &
Pages 461-476 | Received 02 Aug 2017, Accepted 30 Jun 2023, Published online: 27 Jul 2023

References

  • Zhai Z, Martínez JF, Beltran V, et al. Decision support systems for agriculture 4.0: survey and challenges. Comput Electron Agric. 2020;170:105256. doi: 10.1016/j.compag.2020.105256
  • Raj M, Gupta S, Chamola V, et al. A survey on the role of internet of things for adopting and promoting agriculture 4.0. J Netw Comput Appl. 2021;187:103107. doi: 10.1016/j.jnca.2021.103107
  • Costa B, Bachiega J Jr., de Carvalho LR, et al. Orchestration in fog computing: a comprehensive survey. ACM Comput Surv (CSUR). 2022;55(2):1–34. doi: 10.1145/3486221
  • Rani A, Prakash V, Darbari M. Fog computing paradigm with internet of things to solve challenges of cloud with IoT. In: Advancements in Interdisciplinary Research: First International Conference, AIR 2022; Prayagraj, India; 2022 May 6–7; Revised Selected Papers; 2023. p. 72–84.
  • Kalyani Y, Collier R. A systematic survey on the role of Cloud, Fog, and Edge computing combination in smart agriculture. Sensors. 2021;21(17):5922. doi: 10.3390/s21175922
  • Escamilla-Ambrosio P, Rodríguez-Mota A, Aguirre-Anaya E, et al. Distributing computing in the internet of things: Cloud, Fog and Edge computing overview. In: NEO 2016. Springer; 2018. p. 87–115.
  • Villarrubia G, De Paz JF, Iglesia DH, et al. Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation. Sensors. 2017;17(8):1775. doi: 10.3390/s17081775
  • Farsi M, Daneshkhah A, Hosseinian-Far A, et al. Digital twin technologies and smart cities. Berlin/Heidelberg, Germany: Springer; 2020.
  • Cimino C, Negri E, Fumagalli L. Review of digital twin applications in manufacturing. Comput Ind. 2019;113:103130. doi: 10.1016/j.compind.2019.103130
  • Erol T, Mendi AF, Doğan D. The digital twin revolution in healthcare. In: 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey; 2020. p. 1–7.
  • Opoku DJ, Perera S, Osei-Kyei R, et al. Digital twin application in the construction industry: a literature review. J Build Eng. 2021;40:102726. doi: 10.1016/j.jobe.2021.102726
  • Liu M, Fang S, Dong H, et al. Review of digital twin about concepts, technologies, and industrial applications. J Manuf Syst. 2021;58:346–361. doi: 10.1016/j.jmsy.2020.06.017
  • Madni AM, Madni CC, Lucero SD. Leveraging digital twin technology in model-based systems engineering. Systems. 2019;7(1):7. doi: 10.3390/systems7010007
  • Svetashova Y, Schmid S, Sure-Vetter Y. New facets of semantic interoperability: adding JSON-JSON-LD transformation functionality to the BIG IoT API. In: ISWC (Posters, Demos & Industry Tracks), Vienna, Austria; 2017.
  • Ramanathan G, Vachtsevanou D, Garcia K, et al. Semantic knowledge for autonomous smart farming. IFAC-PapersOnLine. 2022;55(32):217–222. doi: 10.1016/j.ifacol.2022.11.142
  • Mayer S, Verborgh R, Kovatsch M, et al. Smart configuration of smart environments. IEEE Trans Autom Sci Eng. 2016;13(3):1247–1255. doi: 10.1109/TASE.8856
  • Falcão R, Matar R, Rauch B. Using i4. 0 digital twins in agriculture. Preprint; 2023. arXiv:2301.09682.
  • Lakka E, Petroulakis NE, Hatzivasilis G, et al. End-to-end semantic interoperability mechanisms for IoT. In: 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). IEEE; 2019. p. 1–6.
  • Valle PHD, Garcés L, Nakagawa EY. A typology of architectural strategies for interoperability. In: Proceedings of the XIII Brazilian Symposium on Software Components, Architectures, and Reuse, Salvador, Brazil; 2019. p. 3–12.
  • Kalyani Y, Collier R. Towards a new architecture: multi-agent based Cloud-Fog-Edge computing and digital twin for smart agriculture. International Symposium on Intelligent and Distributed Computing. Cham: Springer International Publishing; 2022.
  • Alharbi HA, Aldossary M. Energy-efficient Edge-Fog-Cloud architecture for IoT-based smart agriculture environment. IEEE Access. 2021;9:110480–110492. doi: 10.1109/ACCESS.2021.3101397
  • Tsipis A, Papamichail A, Koufoudakis G, et al. Latency-adjustable cloud/fog computing architecture for time-sensitive environmental monitoring in olive groves. AgriEngineering. 2020;2(1):175–205. doi: 10.3390/agriengineering2010011
  • Montoya-Munoz AI, Rendon OMC. An approach based on fog computing for providing reliability in iot data collection: a case study in a colombian coffee smart farm. Appl Sci. 2020;10(24):8904. doi: 10.3390/app10248904
  • Knebel FP, Wickboldt JA, de Freitas EP. A Cloud-Fog computing architecture for real-time digital twins. Preprint; 2020. arXiv:2012.06118.
  • Qi Q, Zhao D, Liao TW, et al. Modeling of cyber-physical systems and digital twin based on Edge computing, Fog computing and Cloud computing towards smart manufacturing. In: International Manufacturing Science and Engineering Conference. vol. 51357. American Society of Mechanical Engineers; 2018. p. V001T05A018.
  • Girletti L, Groshev M, Guimarães C, et al. An intelligent edge-based digital twin for robotics. In: 2020 IEEE Globecom Workshops (GC Wkshps). IEEE; 2020. p. 1–6.
  • Xu W, Cui J, Li L, et al. Digital twin-based industrial cloud robotics: framework, control approach and implementation. J Manuf Syst. 2021;58:196–209. doi: 10.1016/j.jmsy.2020.07.013
  • Braun S, Mostafa Y, Ulmer J, et al. Agents-as-a-service-a novel approach to on-premise digital twins. In: 2021 IEEE 17th International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE; 2021. p. 125–130.
  • Croatti A, Gabellini M, Montagna S, et al. On the integration of agents and digital twins in healthcare. J Med Syst. 2020;44:1–8. doi: 10.1007/s10916-020-01623-5
  • Gorodetsky V, Kozhevnikov S, Novichkov D, et al. The framework for designing autonomous cyber-physical multi-agent systems for adaptive resource management. In: International Conference on Industrial Applications of Holonic and Multi-Agent Systems. Springer; 2019. p. 52–64.
  • Clemen T, Ahmady-Moghaddam N, Lenfers UA, et al. Multi-agent systems and digital twins for smarter cities. In: Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Virginia, USA; 2021. p. 45–55.
  • Laryukhin V, Skobelev P, Lakhin O, et al. Towards developing a cyber-physical multi-agent system for managing precise farms with digital twins of plants. Cybern Phys. 2019;8(4):257–261. doi: 10.35470/2226-4116
  • Mariani S, Picone M, Ricci A. About digital twins, agents, and multiagent systems: a cross-fertilisation journey. Preprint; 2022. arXiv:2206.03253.
  • Schraudner D, Harth A. A restful interaction model for semantic digital twins. In: SeDiT@ESWC, Hersonissos, Greece; 2022.
  • Eleftheriou OT, imara AD, Kotis KI, et al. Saving energy with comfort: a semantic digital twin approach for smart buildings. In: SeDiT@ESWC, Hersonissos, Greece; 2022.
  • Katsigarakis K, Lilis GN, Rovas D, et al. A digital twin platform generating knowledge graphs for construction projects. In: SeDiT@ESWC, Hersonissos, Greece; 2022.
  • Kalyani Y, Rahman S, Collier RW. Integration of hypermedia-agents, microservices and digital twin for smart agriculture. In: Proceedings of the PoEM 2022 Workshops and Models at Work co-located with Practice of Enterprise Modelling 2022; London, United Kingdom; 2022 Nov 23–25; volume 3298 of CEUR Workshop Proceedings. CEUR-WS.org; 2022.
  • Antoniu G, Valduriez P, Hoppe H-C, et al. Towards integrated hardware/software ecosystems for the Edge-Cloud-HPC continuum; 2021. doi: 10.5281/zenodo.5534464.hal-03358930
  • Rosendo D, Silva P, Simonin M, et al. E2clab: exploring the computing continuum through repeatable, replicable and reproducible edge-to-cloud experiments. In: 2020 IEEE International Conference on Cluster Computing (CLUSTER). IEEE; 2020. p. 176–186.
  • Abanda FH, Tah JHM, Keivani R. Trends in built environment semantic web applications: where are we today? Expert Syst Appl. 2013;40(14):5563–5577. doi: 10.1016/j.eswa.2013.04.027
  • Prudhomme C, Homburg T, Ponciano J-J, et al. Interpretation and automatic integration of geospatial data into the semantic web: towards a process of automatic geospatial data interpretation, classification and integration using semantic technologies. Computing. 2020;102:365–391. doi: 10.1007/s00607-019-00701-y
  • Kalaycı EG, González IG, Lösch F, et al. Semantic integration of Bosch manufacturing data using virtual knowledge graphs. In: The Semantic Web–ISWC 2020: 19th International Semantic Web Conference; Athens, Greece; 2020 Nov 2–6; Proceedings, Part II 19. Springer; 2020. p. 464–481.
  • Ibáñez L-D, Millard I, Glaser H, et al. An assessment of adoption and quality of linked data in European open government data. In: The Semantic Web–ISWC 2019: 18th International Semantic Web Conference; Auckland, New Zealand; 2019 Oct 26–30, Proceedings, Part II 18. Springer; 2019. p. 436–453.
  • Hitzler P. A review of the semantic web field. Commun ACM. 2021;64(2):76–83. doi: 10.1145/3397512
  • Bizer C, Heath T, Berners-Lee T. Linked data: the story so far. In: Semantic Services, Interoperability and Web Applications: Emerging Concepts. IGI Global; 2011. p. 205–227.
  • Collier RW, O'Neill E, Lillis D, et al. Mams: multi-agent microservices. In: Companion Proceedings of The 2019 World Wide Web Conference, San Francisco, USA; 2019. p. 655–662.
  • Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974;14(6):415–421. doi: 10.1111/wre.1974.14.issue-6