598
Views
0
CrossRef citations to date
0
Altmetric
SI-Novel Approaches for Distributed Intelligent Systems

Flexible simulation of traffic with microservices, agents & REST

, &
Pages 490-506 | Received 28 Feb 2023, Accepted 25 Jul 2023, Published online: 31 Jul 2023

References

  • Polhill JG, Ge J, Hare MP, et al. Crossing the chasm: a ‘tube-map’ for agent-based social simulation of policy scenarios in spatially-distributed systems. GeoInformatica. 2019;23(2):169–199. doi: 10.1007/s10707-018-00340-z
  • Abar S, Theodoropoulos GK, Lemarinier P, et al. Agent based modelling and simulation tools: a review of the state-of-art software. Computer Sci Rev. 2017;24:13–33. doi: 10.1016/j.cosrev.2017.03.001
  • Tisue S, Wilensky U. Netlogo: a simple environment for modeling complexity. In: International Conference on Complex Systems; Boston, May 16–21; Vol. 21. Citeseer; 2004. p. 16–21.
  • North MJ, Collier NT, Ozik J, et al. Complex adaptive systems modeling with repast simphony. Complex Adaptive Syst Modeling. 2013;1:1–26. doi: 10.1186/2194-3206-1-3
  • Luke S, Cioffi-Revilla C, Panait L, et al. Mason: a multiagent simulation environment. Simulation. 2005;81(7):517–527. doi: 10.1177/0037549705058073
  • Al-Zoubi K, Wainer G. Rise: a general simulation interoperability middleware container. J Parallel Distrib Comput. 2013;73(5):580–594. doi: 10.1016/j.jpdc.2013.01.014
  • Collier N, North M. Repast HPC: a platform for large-scale agent-based modeling. Large-Scale Comput. 2012;10:81–109. doi: 10.1002/9781118130506.ch5
  • Cordasco G, Scarano V, Spagnuolo C. Distributed mason: a scalable distributed multi-agent simulation environment. Simul Model Pract Theory. 2018;89:15–34. doi: 10.1016/j.simpat.2018.09.002
  • Rashid ZN, Zebari SR, Sharif KH, et al. Distributed cloud computing and distributed parallel computing: a review. In: 2018 International Conference on Advanced Science and Engineering (ICOASE). IEEE; 2018. p. 167–172.
  • Taylor SJ. Distributed simulation: state-of-the-art and potential for operational research. Eur J Oper Res. 2019;273(1):1–19. doi: 10.1016/j.ejor.2018.04.032
  • Kitova OV, Kolmakov IB, Dyakonova LP, et al. Hybrid intelligent system of forecasting of the socio-economic development of the country. Int J Appl Business Economic Res. 2016;14(9):5755–5766.
  • Brailsford SC, Eldabi T, Kunc M, et al. Hybrid simulation modelling in operational research: a state-of-the-art review. Eur J Oper Res. 2019;278(3):721–737. doi: 10.1016/j.ejor.2018.10.025
  • Turner II B, Esler KJ, Bridgewater P, et al. Socio-environmental systems (ses) research: what have we learned and how can we use this information in future research programs. Curr Opin Environ Sustain. 2016;19:160–168. doi: 10.1016/j.cosust.2016.04.001
  • Eldabi T, Brailsford S, Djanatliev A, et al. Hybrid simulation challenges and opportunities: a life-cycle approach. In: 2018 Winter Simulation Conference (WSC); Gothenburg, Sweden. IEEE; 2018. p. 1500–1514.
  • Mustafee N, Brailsford S, Djanatliev A, et al. Purpose and benefits of hybrid simulation: contributing to the convergence of its definition. In: 2017 Winter Simulation Conference (WSC); Las Vegas, USA. IEEE; 2017. p. 1631–1645.
  • Fowler M, Lewis J. Microservices: a definition of this new architectural term; 2014. Available at https://martinfowler.com/articles/microservices.html.
  • Collier R, Russell S, Golpayegani F. Harnessing hypermedia MAS and microservices to deliver web scale agent-based simulations. In: Proceedings of the 17th International Conference on Web Information Systems and Technologies – WEBIST; INSTICC. SciTePress; 2021. p. 404–411. [online only]
  • Zimmermann O. Microservices tenets. Computer Sci-Res Develop. 2017;32(3-4):301–310. doi: 10.1007/s00450-016-0337-0
  • Fielding RT. Architectural styles and the design of network-based software architectures [dissertation]. University of California, Irvine; 2000.
  • Collier R, Russell S, Ghanadbashi S, et al. Towards the use of hypermedia mas and microservices for web scale agent-based simulation. SN Computer Sci. 2022;3(6):510. doi: 10.1007/s42979-022-01424-2
  • Pursula M. Simulation of traffic systems-an overview. J Geographic Inform Decision Anal. 1999;3(1):1–8.
  • Espié S, Auberlet JM. ARCHISIM: a behavioral multi-actors traffic simulation model for the study of a traffic system including ITS aspects. Int J ITS Res. 2007;5(1):7–16.
  • Horni A, Nagel K, Axhausen K. Multi-agent transport simulation MATSim. London: Ubiquity Press; 2016.
  • Jagutis M, Russell S, Collier R. Simulating traffic with agents, microservices & rest. In: Proceedings of the 15th International Symposium on Intelligent Distributed Computing; Bremen, Germany. Springer; 2022.
  • Collier RW, O'Neill E, Lillis D, et al. MAMS: multi-agent microServices. In: Companion Proceedings of The 2019 World Wide Web Conference, WWW '19; San Francisco, USA. New York, NY: Association for Computing Machinery; 2019. p. 655–662.
  • Collier RW, Russell S, Lillis D. Reflecting on agent programming with agentspeak (l). In: International Conference on Principles and Practice of Multi-Agent Systems; Bertinoro, Italy. Springer; 2015.
  • Dhaon A, Collier RW. Multiple inheritance in agentSpeak (L)-style programming languages. In: Proceedings of the 4th International Workshop on Programming based on Actors Agents & Decentralized Control; Portland, USA. ACM; 2014. p. 109–120.
  • Ricci A, Viroli M, Omicini A. Cartago: a framework for prototyping artifact-based environments in mas. In: Weyns D, Parunak HVD, Michel F, editors. Environments for multi-agent systems III. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. p. 67–86.
  • O'Neill E, Lillis D, O'Hare GMP, et al. Explicit modelling of resources for multi-agent microservices using the CArtAgO framework. In: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems; Auckland, NZ; 2020.
  • Guinard DD, Trifa VM. Building the web of things. Vol. 3. Manning Publications Shelter Island; 2016. ISBN 9781617292682.
  • Charpenay V, Käbisch S. On modeling the physical world as a collection of things: the w3c thing description ontology. In: European Semantic Web Conference. Springer; 2020. [online only]
  • Ciortea A, Boissier O, Ricci A. Engineering world-wide multi-agent systems with hypermedia. In: International Workshop on Engineering Multi-Agent Systems; Stockholm, Sweden. Springer; 2018. p. 285–301.
  • Adam C, Gaudou B. BDI agents in social simulations: a survey. Knowl Eng Rev. 2016;31(3):207–238. doi: 10.1017/S0269888916000096
  • United Nations Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision. UN; 2019.
  • Ullah M, Khattak K, Khan Z, et al. Vehicular traffic simulation software: a systematic comparative analysis. Pakistan J Eng Technol. 2021;4(1):66–78. doi: 10.51846/vol4iss1pp66-78.
  • Noroozian A, Hindriks K, Jonker C. Towards simulating heterogeneous drivers with cognitive agents. In: ICAART 2014 – Proceedings of the 6th International Conference on Agents and Artificial Intelligence; Vol. 2, 6th International Conference on Agents and Artificial Intelligence, ICAART 2014; Conference date: 06-03-2014 Through 08-03-2014; Angers, France. SciTePress; 2014. p. 147–155.
  • Krajzewicz D, Hertkorn G, Rössel C, et al. SUMO (Simulation of Urban MObility) – an open-source traffic simulation. In: Al-Akaidi A, editor. Proceedings of the 4th Middle East Symposium on Simulation and Modelling (MESM20002); Dubai; 2002. p. 183–187.
  • Prevedouros PD, Li H. Comparison of freeway simulation with INTEGRATION, KRONOS, and KWaves. In: Fourth International Symposium on Highway Capacity. Maui, Hawaii; 2000. p. 96–107. ISSN 0097-8515.
  • Axhausen KW, Horni A, Nagel K. The multi-agent transport simulation MATSim. London (UK): Ubiquity Press; 2016.
  • Fang X, Tettamanti T. Change in microscopic traffic simulation practice with respect to the emerging automated driving technology. Periodica Polytechnica Civil Eng. 2022;66(1):86–95. doi: 10.3311/PPci.17411.
  • Auld J, Hope M, Ley H, et al. POLARIS: agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations. Transp Res Part C: Emerging Technologies. 2016;64:101–116. doi: 10.1016/j.trc.2015.07.017
  • Nagel K, Schreckenberg M. Traffic jam dynamics in stochastic cellular automata. Stuttgart (Germany): Los Alamos National Laboratory; 1995.
  • Shang XC, Li XG, Xie DF, et al. A data-driven two-lane traffic flow model based on cellular automata. Phys A: Statistical Mechanics and Its Applications. 2022;588:126531. doi: 10.1016/j.physa.2021.126531
  • Rao AS, Georgeff MP. Bdi agents: from theory to practice. In: ICMAS; San Francisco, USA; Vol. 95; 1995.
  • Wai SY, Cheah WS, Wai SK, et al. Towards software engineering perspective for BDI agent. In: 2021 4th International Symposium on Agents, Multi-Agent Systems and Robotics (ISAMSR); Malaysia; 2021. p. 106–110.
  • Bulumulla C, Singh D, Padgham L, et al. Multi-level simulation of the physical, cognitive and social. Comput Environ Urban Syst. 2022;93:101756. doi: 10.1016/j.compenvurbsys.2021.101756
  • Drogoul A, Vanbergue D, Meurisse T. Multi-agent based simulation: where are the agents? In: Simão Sichman J, Bousquet F, Davidsson P, editors. Multi-agent-based simulation II. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003. p. 1–15.
  • Edmonds B, Moss S. From kiss to kids – an ‘anti-simplistic’ modelling approach. In: Davidsson P, Logan B, Takadama K, editors. Multi-agent and multi-agent-based simulation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. p. 130–144.
  • Vachtsevanou D, Junker P, Ciortea A, et al. Long-lived agents on the web: Continuous acquisition of behaviors in hypermedia environments. In: Companion Proceedings of the Web Conference; Taipei, Taiwan. 2020. p. 185–189.
  • Ciortea A, Mayer S, Gandon F, et al. A decade in hindsight: the missing bridge between multi-agent systems and the world wide web. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems; Montreal, Canada; 2019.
  • Ciortea A, Mayer S, Boissier O, et al. Exploiting interaction affordances: on engineering autonomous systems for the web of things. In: Second W3C Workshop on the Web of Things The Open Web to Challenge IoT Fragmentation. Munich, Germany; 2019 Jun. [Online]
  • Kravari K, Bassiliades N. A rule-based eCommerce methodology for the IoT using trustworthy intelligent agents and microservices. In: International Joint Conference on Rules and Reasoning; Luxemborg. 2018.
  • Krivic P, Skocir P, Kusek M, et al. Microservices as agents in IoT systems. In: Smart Innovation, Systems and Technologies; 2018. ISSN: 2190-3018.
  • Zouad S, Boufaida M. Using multi-agent microservices for a better dynamic composition of semantic web services. In: Proceedings of the 4th International Conference on Advances in Artificial Intelligence, ICAAI '20. New York, NY: Association for Computing Machinery; 2021. p. 47–52.
  • Alves P, Gomes D, Rodrigues C, et al. Grouplanner: a group recommender system for tourism with multi-agent microservices. In: Dignum F, Mathieu P, Corchado JM, De La Prieta F, editors. Advances in practical applications of agents, multi-agent systems, and complex systems simulation. The PAAMS Collection. Cham: Springer International Publishing; 2022. p. 454–460.
  • Gibson JJ. The ecological approach to visual perception. New York (USA): Houghton-Mifflin; 1979.
  • Weyns D, Omicini A, Odell J. Environment as a first class abstraction in multiagent systems. Auton Agent Multi Agent Syst. 2007;14(1):5–30. doi: 10.1007/s10458-006-0012-0
  • Behrens T, Hindriks KV, Bordini RH, et al. An interface for agent-environment interaction. In: Collier R, Dix J, Novák P, editors. Programming multi-agent systems. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 139–158.
  • Ricci A, Croatti A, Bordini R, et al. Exploiting simulation for MAS programming and engineering-the JaCaMo-sim platform. In: 8th International Workshop on Engineering Multi-Agent Systems (EMAS 2020); Auckland, New Zealand; 2020 May. Cham: Springer. p. 42–60. (Lecture Notes in Computer Science; vol. 12589).
  • Joo J, Kim N, Wysk RA, et al. Agent-based simulation of affordance-based human behaviors in emergency evacuation. Simul Model Pract Theory. 2013;32:99–115. doi: 10.1016/j.simpat.2012.12.007
  • Busogi M, Shin D, Ryu H, et al. Weighted affordance-based agent modeling and simulation in emergency evacuation. Saf Sci. 2017;96:209–227. doi: 10.1016/j.ssci.2017.04.005
  • Hassanpour S, Rassafi AA. Agent-based simulation for pedestrian evacuation behaviour using the affordance concept. KSCE J Civil Eng. 2021;25(4):1433–1445. doi: 10.1007/s12205-021-0206-7
  • Kapadia M, Singh S, Hewlett W, et al. Egocentric affordance fields in pedestrian steering. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D '09. New York, NY: Association for Computing Machinery; 2009. p. 215–223.
  • Ksontini F, Mandiau R, Guessoum Z, et al. Affordance-based agent model for road traffic simulation. Auton Agent Multi Agent Syst. 2015;29(5):821–849. doi: 10.1007/s10458-014-9269-x
  • Klügl F, Timpf S. Approaching interactions in agent-based modelling with an affordance perspective. In: Sukthankar G, Rodriguez-Aguilar JA, editors. Autonomous agents and multiagent systems. Cham: Springer International Publishing; 2017. p. 222–238.
  • Klügl F, Timpf S. Towards more explicit interaction modelling in agent-based simulation using affordance schemata. In: Edelkamp S, Möller R, Rueckert E, editors. KI 2021: Advances in Artificial Intelligence. Cham: Springer International Publishing; 2021. p. 324–337.
  • Maerivoet S, De Moor B. Cellular automata models of road traffic. Phys Rep. 2005;419(1):1–64. doi: 10.1016/j.physrep.2005.08.005
  • Beaumont K, O'Neill E, Bermeo N, et al. Collaborative route finding in semantic mazes. In: Proceedings of the All the Agents Challenge (ATAC 2021); 20th International Semantic Web Conference (online); 2021.
  • Hogan A, Blomqvist E, Cochez M, et al. Knowledge graphs. Springer Nature Switerland; 2021. doi: 10.1007/978-3-031-01918-0. (Synthesis Lectures on Data, Semantics, and Knowledge; 22).