2,403
Views
8
CrossRef citations to date
0
Altmetric
Theme: Genetics – Editorial

Pharmacogenetics in type 2 diabetes: still a conundrum in clinical practice

, &
Pages 155-158 | Received 06 Feb 2017, Accepted 03 Apr 2017, Published online: 17 Apr 2017

References

  • Eichelbaum M, Evert B. Influence of pharmacogenetics on drug disposition and response. Clin Exp Pharmacol Physiol. 1996;23(10–11):983–985.
  • Prescott LF. Pathological and physiological factors affecting drug absorbtion, distribution, elimination, and response in man. In: Gillette JR, Mitchell JR, eds., From: concepts in biochemical pharmacology. Berlin - Heidelberg: Springer-Verlag; 1975. p. 234–257.
  • Madian AG, Wheeler HE, Baker Jones R, et al. Relating human genetic variation in drug responses. Trends Genet. 2012;28(10):487–495.
  • Roses AD. Pharmacogenetics and the practice of medicine. Nature. 2000;405(6788):857–865.
  • Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet. 2000;356(9242):1667–1671.
  • American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2017;40(Suppl. 1):S11–S24.
  • IDF Diabetes Atlas – 7th Edition. [cited 2017 Apr 1]. Available from www.diabetesatlas.org
  • Brunetti A, Brunetti FS, Chiefari E. Pharmacogenetics of type 2 diabetes mellitus: an example of success in clinical and translational medicine. World J Transl Med. 2014;12(3):141–149.
  • Klonoff DC. Precision medicine for managing diabetes. J Diabetes Sci Technol. 2015;9(1):3–7.
  • Motsinger-Reif AA, Jorgenson E, Relling MV, et al. Genome-wide association studies in pharmacogenomics: successes and lessons. Pharmacogenet Genomics. 2013;23(8):383–394.
  • Brunetti A, Chiefari E, Foti D. Perspectives on the contribution of genetics to the pathogenesis of type 2 diabetes mellitus. Recenti Prog Med. 2011;102(12):468–475.
  • Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–47.
  • Mohlke KL, Boehnke M. Recent advances in understanding the genetic architecture of type 2 diabetes. Hum Mol Gen. 2015;24(R1):R85–92.
  • Chiefari E, Tanyolaç S, Paonessa F, et al. Functional variants of the HMGA1 gene and type 2 diabetes mellitus. Jama. 2011;305(9):903–912.
  • Maruthur NM, Gribble MO, Bennett WL, et al. The pharmacogenetics of type 2 diabetes: a systematic review. Diabetes Care. 2014;37(3):876–886.
  • Manolopoulos VG, Ragia G, Tavridou A.Pharmacogenomics of oral antidiabetic medications: current data and pharmacoepigenomic perspective. Pharmacogenomics. 2011;12(8):1161–1191.
  • Pearson ER. Pharmacogenetics in diabetes. Curr Diab Rep. 2009;9(2):172–181.
  • Huang C, Florez JC. Pharmacogenetics in type 2 diabetes: potential implications for clinical practice. Genome Med. 2011;3(11):76.
  • Kleinberger JW, Pollin TI. Personalized medicine in diabetes mellitus: current opportunities and future prospects. Ann N Y Acad Sci. 2015;1346(1):45–56.
  • Flanagan SE, Clauin S, Bellanne-Chantelot C, et al. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat. 2009;30(2):170–180.
  • Pearson ER, Flechtner I, Njolstad PR, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355(5):467–477.
  • Pearson ER, Liddell WG, Shepherd M, et al. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med. 2000;17(7):543–545.
  • Jesic MD, Sajic S, Jesic MM, et al. A case of new mutation in maturity-onset diabetes of the young type 3 (MODY 3) responsive to a low dose of sulphonylurea. Diabetes Res Clin Pract. 2008;81(1):e1–3.
  • Viollet B, Guigas B, Sanz Garcia N, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122(6):253–270.
  • Todd JN, Florez JC. An update on the pharmacogenomics of metformin: progress, problems and potential. Pharmacogenomics. 2014;15(4):529–539.
  • Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cationic transporter 1 (OCT1) on metformin action. J Clin Invest. 2007;117(5):1422–1431.
  • Zhou K, Donnelly LA, Kimber CH, et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes. 2009;58(6):1434–1439.
  • Shu Y, Brown C, Castro RA, et al. Effect of genetic variation in the organic cationic transporter 1, OCT1, on metformin parmacokinetics. Clin Pharmacol Ther. 2008;83(2):273–280.
  • Becker ML, Visser LE, Van Schalk RH, et al. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J. 2009;9(4):242–247.
  • Tkac I, Klimcakova L, Javorsky M, et al. Pharmacogenomic association between a variant in SLC47A1 gene and therapeutic type response to metformin in 2 diabetes. Diabetes Obes Metab. 2013;15:189–191.
  • Dujic T, Zhou K, Donnelly LA, et al. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes. 2015;64(5):1786–1793.
  • Dujic T, Causevic A, Bego T, et al. Organic cation transporter 1 variants and gastrointestinal side effects of metformin in patients with Type 2 diabetes. Diabet Med. 2016;33(4):511–514.
  • Becker ML, Visser LE, Van Schaik RH, et al. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes. 2009;58(3):745–749.
  • Zhou K, Yee SW, Seiser EL, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet. 2016;48(9):1055–1059.
  • Jablonski KA, McAteer JB, De Bakker PI, et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes. 2010;59(10):2672–2681.
  • Zhou K, Bellenguez C, Spenser CCA, et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet. 2011;43(2):117–120.
  • Florez JC, Jablonski KA, Taylor A, et al. The C allele of ATM rs11212617 does not associate with metformin response in the diabetes prevention program. Diabetes Care. 2012;35(9):1864–1867.
  • van Leeuwen N, Nijpels G, Becker ML, et al. A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of 5 cohorts. Diabetologia. 2012;55(7):1971–1977.
  • Tkac I. Replication of the association of gene variant near ATM and response to metformin. Pharmacogenomics. 2012;13(12):1331–1332.
  • Ragia G, Petridis I, Tavridou A, et al. Presence of CYP2C9*3 allele increases risk for hypoglycemia in Type 2 diabetic patients treated with sulfonylureas. Pharmacogenomics. 2009;10(11):1781–1787.
  • Holstein A, Hahn M, Patzer O, et al. Impact of clinical factors and CYP2C9 variants for the risk of severe sulfonylurea-induced hypoglycemia. Eur J Clin Pharmacol. 2011;67(5):471–476.
  • Zhou K, Donnelly L, Burch L, et al. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a Go-DARTS study. Clin Pharmacol Ther. 2010;87(1):52–56.
  • Schroner Z, Javorsky M, Tkacova R, et al. Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13(1):89–91.
  • Holstein A, Hahn M, Körner A, et al. TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC Med Genet. 2011;12:30.
  • Feng Y, Mao G, Ren X, et al. Ser1369Ala variant in sulphonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type e diabetic patients. Diabetes Care. 2008;31(10):1939–1944.
  • Schroner Z, Dobrikova M, Klimcakova L, et al. Variation in KCNQ11 is associated with therapeutic response to sulphonylureas. Med Sci Monit. 2011;17(7):CR392–6.
  • Gloyn AL, Hashim Y, Ashcroft SJ, et al. Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with type 2 diabetes mellitus (UKPDS 53). Diabetes Med. 2001;18(3):206–212.
  • Becker ML, Pearson ER, Tkáč I. Pharmacogenetics of oral antidiabetic drugs. Int J Endocrinol. 2013;2013:686315.
  • Karalliedde J, Buckingham RE. Thiazolidinediones and their fluid-related adverse effects: facts, fiction and putative management strategies. Drug Saf. 2007;30(9):741–753.
  • Kirchheiner J, Roots I, Goldammer M, et al. Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin Pharmacokinet. 2005;44(12):1209–1225.
  • Tomalik-Scharte D, Fuhr U, Hellmich M, et al. Effect of the CYP2C8 genotype on the pharmacokinetics and pharmacodynamics of repaglinide. Drug Metab Dispos. 2011;39(5):927–932.
  • Chen M, Hu C, Jia W. Pharmacogenomics of glinides. Pharmacogenomics. 2015;16(1):45–60.
  • Sathananthan A, Man CD, Micheletto F, et al. Common genetic variation in GLP1R and insulin secretion in response to exogenous GLP-1 in nondiabetic subjects: a pilot study. Diabetes Care. 2010;33(9):2074–2076.
  • ‘t Hart LM, Fritsche A, Nijpels G, et al. The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway. Diabetes. 2013;62(9):3275–3281.
  • Chen M, Zhang R, Jiang F, et al. Joint effects of diabetic-related genomic loci on the therapeutic efficacy of oral anti-diabetic drugs in Chinese type 2 diabetes patients. Sci Rep. 2016;6:23266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.