647
Views
2
CrossRef citations to date
0
Altmetric
Review

Human amylase gene copy number variation as a determinant of metabolic state

, , , &
Pages 193-205 | Received 11 May 2018, Accepted 09 Jul 2018, Published online: 30 Jul 2018

References

  • Fact sheet: Obesity and overweight, World Health Organization. Geneva. 2017. Available at http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [Last accessed 2018 Apr 24].
  • Action on obesity: Comprehensive care for all, Royal College of Physicians. London. 2013. Available at https://www.rcplondon.ac.uk/projects/outputs/action-obesity-comprehensive-care-all [Last accessed 2018 Apr 24].
  • Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015 Feb;518(7538):197.
  • Obesity: identification, assessment and management. Clinical guideline [CG189]. National Institute for Health and Care Excellence. London, 2014. Available at https://www.nice.org.uk/guidance/cg189 [Last accessed 2018 Apr 24th].
  • Health matters: obesity and the food environment, Public Health England. London. 2017. Available at https://www.gov.uk/government/publications/health-matters-obesity-and-the-food-environment/health-matters-obesity-and-the-food-environment–2 [Last accessed 2018 Apr 24th].
  • Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet. 1997 Jul 1;27(4):325–351.
  • Visscher PM, Brown MA, McCarthy MI, et al. Five years of GWAS discovery. Am J Hum Genet. 2012 Jan 13;90(1):7–24.
  • Zaitlen N, Kraft P, Patterson N, et al. Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLoS Genet. 2013 May 30;9(5):e1003520.
  • Waalen J. The genetics of human obesity. Translational Res. 2014 Oct 1;164(4):293–301.
  • Falchi M, Moustafa JS, Takousis P, et al. Low copy number of the salivary amylase gene predisposes to obesity. Nat Genet. 2014 May;46(5):492.
  • McCarroll SA, Kuruvilla FG, Korn JM, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat Genet. 2008 Oct;40(10):1166.
  • Locke DP, Sharp AJ, McCarroll SA, et al. Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am J Hum Genet. 2006 Aug 1;79(2):275–290.
  • Santos JL, Saus E, Smalley SV, et al. Copy number polymorphism of the salivary amylase gene: implications in human nutrition research. J Nutrigenet Nutrigenomics. 2012;5(3):117–131.
  • Des Gachons CP, Pa B. Salivary amylase: digestion and metabolic syndrome. Curr Diab Rep. 2016 Oct 1; 16(10):102.
  • Mandel AL, Des Gachons CP, Kl P, et al. Individual differences in AMY1 gene copy number, salivary α-amylase levels, and the perception of oral starch. PloS one. 2010 Oct 13;5(10):e13352.
  • Oppenheim FG, Salih E, Siqueira WL, et al. Salivary proteome and its genetic polymorphisms. Ann N Y Acad Sci. 2007 Mar 1;1098(1):22–50.
  • Arredouani A, Stocchero M, Culeddu N, et al. DESIR study group.metabolomic profile of low–copy number carriers at the salivary α-amylase gene suggests a metabolic shift toward lipid-based energy production. Diabetes. 2016 Nov 1;65(11):3362–3368.
  • Alberti G, Parada J, Cataldo LR, et al. Glycemic response after starch consumption in relation to salivary amylase activity and copy-number variation of AMY1 gene. J Food Nutr Res. 2015;3(8):558–563.
  • Afsartala Z, Savabkar S, Mojarad EN, et al. Expression of liver alpha-amylase in obese mouse hepatocytes. Gastroenterol Hepatol Bed Bench. 2016;9(4):278.
  • Samuelson LC, Wiebauer K, Gumucio DL, et al. Expression of the human amylase genes: recent origin of a salivary amylase promoter from an actin pseudogene. Nucleic Acids Res. 1988 Sep 12;16(17):8261–8276.
  • Fernández CI, Wiley AS. Rethinking the starch digestion hypothesis for AMY1 copy number variation in humans. Am J Phys Anthropol. 2017 Aug 1; 163(4):645–657.
  • Yong RY, Mustaffa SA, Wasan PS, et al. Complex copy number variation of AMY1 does not associate with obesity in two East Asian cohorts. Hum Mutat. 2016 Jul 1;37(7):669–678.
  • Groot PC, Bleeker MJ, Pronk JC, et al. The human α-amylase multigene family consists of haplotypes with variable numbers of genes. Genomics. 1989 Jul 31;5(1):29–42.
  • Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004 Sep;36(9):949.
  • Perry GH, Dominy NJ, Claw KG, et al. Diet and the evolution of human amylase gene copy number variation. Nat Genet. 2007 Oct;39(10):1256.
  • Groot PC, Mager WH, Frants RR. Interpretation of polymorphic DNA patterns in the human α-amylase multigene family. Genomics. 1991 Jul 31;10(3):779–785.
  • Usher CL, Handsaker RE, Esko T, et al. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat Genet. 2015 Aug;47(8):921.
  • Yang ZM, Lin J, Chen LH, et al. The roles of AMY1 copies and protein expression in human salivary α-amylase activity. Physiol Behav. 2015 Jan 1;138:173–178.
  • Tan VM, Ooi DS, Kapur J, et al. The role of digestive factors in determining glycemic response in a multiethnic Asian population. Eur J Nutr. 2016 Jun 1;55(4):1573–1581.
  • Hardy K, Brand-Miller J, Brown KD, et al. The importance of dietary carbohydrate in human evolution. Q Rev Biol. 2015 Sep 1;90(3):251–268.
  • Inchley CE, Larbey CD, Shwan NA, et al. Selective sweep on human amylase genes postdates the split with Neanderthals. Sci Rep. 2016 Nov;17(6):37198.
  • Mandel AL, Breslin PA. high endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults–3. J Nutr. 2012 Apr 4; 142(5):853–858.
  • Hoebler C, Karinthi A, Devaux MF, et al. Physical and chemical transformations of cereal food during oral digestion in human subjects. Br J Nutr. 1998 Nov;80(5):429–436.
  • Read NW, Welch IM, Austen CJ, et al. Swallowing food without chewing; a simple way to reduce postprandial glycaemia. British Journal of Nutrition. 1986 Jan;55(1):43–47.
  • Ting CN, Rosenberg MP, Snow CM, et al.Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes Dev. 1992 Aug 1;6(8):1457–1465.
  • Meisler MH, Ting CN. The remarkable evolutionary history of the human amylase genes. Crit Rev Oral Biol Med. 1993. 4; Apr(3):503–509.
  • Boehlke C, Zierau O, Hannig C. Salivary amylase–the enzyme of unspecialized euryphagous animals. Arch Oral Biol. 2015 Aug 1;60(8):1162–1176.
  • Simpson JW, Doxey DL, Brown R. Serum isoamylase values in normal dogs and dogs with exocrine pancreatic insufficiency. Vet Res Commun. 1984 Dec 1;8(1):303–308.
  • Axelsson E, Ratnakumar A, Arendt ML, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013 Mar;495(7441):360.
  • Arendt M, Fall T, Lindblad‐Toh K, et al. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes. Animal Genetics. 2014 Oct 1;45(5):716–722.
  • Wilson GM, Flibotte S, Missirlis PI, et al. Identification by full-coverage array CGH of human DNA copy number increases relative to chimpanzee and gorilla. Genome Res. 2006 Feb 1;16(2):173–181.
  • Perry GH, Kistler L, Kelaita MA, et al. Insights into hominin phenotypic and dietary evolution from ancient DNA sequence data. J Hum Evol. 2015 Feb;28(79):55–63.
  • McGeachin RL, Akin JR. Amylase levels in the tissues and body fluids of several primate species. Comparative Biochemistry and Physiology. A, Comparative Physiology. 1982;72(1):267–269.
  • Behringer V, Borchers C, Deschner T, et al. Measurements of salivary alpha amylase and salivary cortisol in hominoid primates reveal within-species consistency and between-species differences. PloS one. 2013 Apr 17;8(4):e60773.
  • Hohmann G, Robbins M, Boesch C. Feeding ecology in apes and other primates. Cambridge: Cambridge University Press; 2006.
  • Carpenter D, Dhar S, Mitchell LM, et al. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes. Hum Mol Genet. 2015 Mar 18;24(12):3472–3480.
  • Shwan NA, Louzada S, Yang F, et al. Recurrent rearrangements of human amylase genes create multiple independent CNV series. Hum Mutat. 2017 May 1;38(5):532–539.
  • Lazaridis I, Patterson N, Mittnik A, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014 Sep;513(7518):409.
  • Olalde I, Allentoft ME, Sánchez-Quinto F, et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old mesolithic European. Nature. 2014 Mar;507(7491):225.
  • Greenhill C. Copy number variants in AMY1 connected with obesity via carbohydrate metabolism. Nat Rev Endocrinol. 2014 Jun 1;10(6).
  • Speliotes EK, Willer CJ, Berndt SI, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010 Nov;42(11):937.
  • Choi YJ, Nam YS, Yun JM, et al. Association between salivary amylase (AMY1) gene copy numbes and insulin resistance in asymptomatic Korean men. Diabetic Med. 2015 Dec 1;32(12):1588–1595.
  • Marcovecchio ML, Florio R, Verginelli F, et al. Low AMY1 gene copy number is associated with increased body mass index in prepubertal boys. PloS one. 2016 May 5;11(5):e0154961.
  • Cantsilieris S, White SJ. Correlating multiallelic copy number polymorphisms with disease susceptibility. Hum Mutat. 2013 Jan 1;34(1):1–3.
  • Ooi DS, Tan VM, Ong SG, et al. Differences in AMY1 gene copy numbers derived from blood, buccal cells and saliva using quantitative and droplet digital pcr methods: flagging the pitfall. PloS one. 2017 Jan 26;12(1):e0170767.
  • White S. Counting copy number and calories. Nat Genet. 2015 Aug;47(8):852.
  • Eisfeldt J, Nilsson D, Andersson-Assarsson JC, et al. Confident copy number assessment using whole genome sequencing data. PloS one. 2018 Mar 26;13(3):e0189710.
  • Bonnefond A, Yengo L, Dechaume A, et al. Relationship between salivary/pancreatic amylase and body mass index: a systems biology approach. BMC Med. 2017 Dec;15(1):37.
  • Carpenter D, Mitchell LM, Armour JA. Copy number variation of human AMY1 is a minor contributor to variation in salivary amylase expression and activity. Hum Genomics. 2017 Dec;11(1):2.
  • Mejía-Benítez MA, Bonnefond A, Yengo L, et al. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children. Diabetologia. 2015 Feb 1;58(2):290–294.
  • Viljakainen H, Andersson-Assarsson JC, Armenio M, et al. Low copy number of the AMY1 locus is associated with early-onset female obesity in Finland. PloS one. 2015 Jul 1;10(7):e0131883.
  • Elks CE, Den Hoed M, Zhao JH, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol (Lausanne). 2012 Feb;28(3):29.
  • Haworth C, Carnell S, Meaburn EL, et al. Increasing heritability of BMI and stronger associations with the FTO gene over childhood. Obes. 2008 Dec 1;16(12):2663–2668.
  • Rukh G, Ericson U, Andersson-Assarsson J, et al. Dietary starch intake modifies the relation between copy number variation in the salivary amylase gene and BMI. Am J Clin Nutr. 2017 May 24;106(1):256–262.
  • Powley TL. The ventromedial hypothalamic syndrome, satiety, and a cephalic phase hypothesis. Psychol Rev. 1977 Jan;84(1):89.
  • Fischer U, Hommel H, Ziegler M, et al. The mechanism of insulin secretion after oral glucose administration. Diabetologia. 1972 Apr 1;8(2):104–110.
  • Feldman M, Richardson CT. Role of thought, sight, smell, and taste of food in the cephalic phase of gastric acid secretion in humans. Gastroenterology. 1986 Feb 1;90(2):428–433.
  • Novis BH, Bank S, Marks IN. The cephalic phase of pancreatic secretion in man. Scand J Gastroenterol. 1971 Aug 1;6(5):417–422.
  • Ahrén B, Holst JJ. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001 May 1;50(5):1030–1038.
  • Teff KL, Engelman K. Oral sensory stimulation improves glucose tolerance in humans: effects on insulin, C-peptide, and glucagon. Am J Physiology-Regulatory, Integr Comp Physiol. 1996 Jun 1;270(6):R1371–9.
  • Butterworth PJ, Warren FJ, Ellis PR. Human α‐amylase and starch digestion: an interesting marriage. Starch‐Stärke. 2011 Jul 1;63(7):395–405.
  • Little TJ, Gupta N, Case RM, et al. Sweetness and bitterness taste of meals per se does not mediate gastric emptying in humans. Am J Physiology-Regulatory, Integr Comp Physiol. 2009 Sep;297(3):R632–9.
  • Yee KK, Sukumaran SK, Kotha R, et al. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc Natl Acad Sci. 2011 Mar 29;108(13):5431–5436.
  • Sukumaran SK, Yee KK, Iwata S, et al. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides. Proc Natl Acad Sci. 2016 May 24;113(21):6035–6040.
  • Glendinning JI, Stano S, Holter M, et al. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+ T1r3-independent taste transduction pathway in mice. Am J Physiology-Regulatory, Integr Comp Physiol. 2015 Jul 8;309(5):R552–60.
  • Lapis TJ, Penner MH, Lim J. Evidence that humans can taste glucose polymers. Chem Senses. 2014 Oct 17;39(9):737–747.
  • Heianza Y, Sun D, Wang T, et al. Starch digestion–related amylase genetic variant affects 2-year canges in adiposity in response to weight-loss diets: the POUNDS lost trial. Diabetes. 2017 Sep 1;66(9):2416–2423.
  • Willis HJ, Eldridge AL, Beiseigel J, et al. Greater satiety response with resistant starch and corn bran in human subjects. Nutr Res. 2009 Feb 1; 29(2):100–105.
  • Mennella I, Fogliano V, Vitaglione P. Salivary lipase and α-amylase activities are higher in overweight than in normal weight subjects: influences on dietary behavior. Food Research International. 2014 Dec;1(66):463–468.
  • Chen LH, Yang ZM, Chen WW, et al. Attenuated acute salivary α-amylase responses to gustatory stimulation with citric acid in thin children. Br J Nutr. 2015 Apr;113(7):1078–1085.
  • Nakajima K. Low serum amylase and obesity, diabetes and metabolic syndrome: A novel interpretation. World J Diabetes. 2016 Mar 25; 7(6):112.
  • Skrha J, Stĕpán J. Clinical significance of amylase isoenzyme determination. Acta Universitatis Carolinae Medica Monographia. 1987;120:1–81.
  • Kondo T, Hayakawa T, Shibata T, et al. Serum levels of pancreatic enzymes in lean and obese subjects. Int J Pancreatology. 1988 May 1;3(4):241–248.
  • Nakajima K, Nemoto T, Muneyuki T, et al. Low serum amylase in association with metabolic syndrome and diabetes: a community-based study. Cardiovasc Diabetol. 2011 Dec;10(1):34.
  • Nakajima K, Muneyuki T, Munakata H, et al. Revisiting the cardiometabolic relevance of serum amylase. BMC Res Notes. 2011 Dec;4(1):419.
  • Lee JG, Park SW, Cho BM, et al. Serum amylase and risk of the metabolic syndrome in Korean adults. Clinica Chimica Acta. 2011 Sep 18;412(19–20):1848–1853.
  • Muneyuki T, Nakajima K, Aoki A, et al. Latent associations of low serum amylase with decreased plasma insulin levels and insulin resistance in asymptomatic middle-aged adults. Cardiovasc Diabetol. 2012 Dec;11(1):80.
  • Zhao Y, Zhang J, Zhang J, et al. Metabolic syndrome and diabetes are associated with low serum amylase in a Chinese asymptomatic population. Scand J Clin Lab Invest. 2014 Apr 1;74(3):235–239.
  • Zhuang L, Su JB, Zhang XL, et al. Serum amylase levels in relation to islet β cell function in patients with early type 2 diabetes. PloS one. 2016 Sep 8;11(9):e0162204.
  • Mossner J, Logsdon CD, Goldfine ID, et al. Regulation of pancreatic acinar cell insulin receptors by insulin. Am J Physiology-Gastrointestinal Liver Physiol. 1984 Aug 1;247(2):G155–60.
  • Williams JA, Goldfine ID. The insulin-pancreatic acinar axis. Diabetes. 1985 Oct 1;34(10):980–986.
  • Schneeman BO, Inman MD, Stern JS. Pancreatic enzyme activity in obese and lean zucker rats: a developmental study. J Nutr. 1983 Apr 1;113(4):921–925.
  • Carter DA, Wobken JD, Dixit PK, et al. Immunoreactive insulin in rat salivary glands and its dependence on age and serum insulin levels. Proc Soc Exp Biol Med. 1995 Jul;209(3):245–250.
  • Rocha EM, De M.Lima MH, Cr C, et al. Characterization of the insulin-signaling pathway in lacrimal and salivary glands of rats. Curr Eye Res. 2000 Jan 1;21(5):833–842.
  • Wu WC, Wang CY. Association between non-alcoholic fatty pancreatic disease (NAFPD) and the metabolic syndrome: case–control retrospective study. Cardiovasc Diabetol. 2013 Dec;12(1):77.
  • Lee JS, Kim SH, Jun DW, et al. Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome. World Journal of Gastroenterology: WJG. 2009 Apr 21;15(15):1869.
  • Van Geenen EJ, Smits MM, Schreuder TC, et al. Nonalcoholic fatty liver disease is related to nonalcoholic fatty pancreas disease. Pancreas. 2010 Nov 1;39(8):1185–1190.
  • Nakajima K, Oshida H, Muneyuki T, et al. Independent association between low serum amylase and non-alcoholic fatty liver disease in asymptomatic adults: a cross-sectional observational study. BMJ open. 2013 Jan 1;3(1):e002235.
  • Nunes AC, Pontes JM, Rosa A, et al. Screening for pancreatic exocrine insufficiency in patients with diabetes mellitus. Am J Gastroenterol. 2003 Dec;98(12):2672.
  • Hardt PD, Ewald N. Exocrine pancreatic insufficiency in diabetes mellitus: a complication of diabetic neuropathy or a different type of diabetes? Exp Diabetes Res. 2011 Aug;1:2011.
  • Ferrannini E, Natali A, Camastra S, et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes. 2013 May 1;62(5):1730–1737.
  • Chandran M, Phillips SA, Ciaraldi T, et al. Adiponectin: more than just another fat cell hormone? Diabetes Care. 2003 Aug 1;26(8):2442–2450.
  • Matusbara M. Plasma adiponectin decrease in women with nonalcoholic fatty liver. Endocr J. 2004;51(6):587–593.
  • Nater UM, La Marca R, Florin L, et al. Stress-induced changes in human salivary alpha-amylase activity—associations with adrenergic activity. Psychoneuroendocrinology. 2006 Jan 1;31(1):49–58.
  • Collen MJ, Ansher AF, Chapman AB, et al. Serum amylase in patients with renal insufficiency and renal failure. Am J Gastroenterol. 1990 Oct 1;85(10):1377-1380.
  • Oh HC, Kwon CI, El Hajj II, et al. Low serum pancreatic amylase and lipase values are simple and useful predictors to diagnose chronic pancreatitis. Gut Liver. 2017 Nov;11(6):878.
  • Parks BW, Nam E, Org E, et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 2013 Jan 8;17(1):141–152.
  • Karlsson CL, Önnerfält J, Xu J, et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obes. 2012 Nov 1;20(11):2257–2261.
  • Weickert MO. What dietary modification best improves insulin sensitivity and why? Clin Endocrinol (Oxf). 2012 Oct 1;77(4):508–512.
  • Weickert MO, Pfeiffer AF. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J Nutr. 2018 Jan 1;148(1):7–12.
  • Isken F, Klaus S, Osterhoff M, et al. Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice. J Nutr Biochem. 2010 Apr 1;21(4):278–284.
  • Track NS, Cawkwell ME, Chin BC, et al. Guar gum consumption in adolescent and adult rats: short-and long-term metabolic effects. Can J Physiol Pharmacol. 1985 Sep 1;63(9):1113–1121.
  • McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984 Feb 1;39(2):338–342.
  • Aguirre M, Jonkers DM, Troost FJ, et al. In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PloS one. 2014 Nov 26;9(11):e113864.
  • Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016 Jul;535(7612):376.
  • Unoki H, Takahashi A, Kawaguchi T, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008 Sep;40(9):1098.
  • Okada Y, Kubo M, Ohmiya H, et al. Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations. Nat Genet. 2012 Mar;44(3):302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.