389
Views
40
CrossRef citations to date
0
Altmetric
Review

Hypophysitis induced by immune checkpoint inhibitors: a 10-year assessment

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 381-398 | Received 15 Sep 2019, Accepted 03 Dec 2019, Published online: 16 Dec 2019

References

  • Caturegli P, Newschaffer C, Olivi A, et al. Autoimmune hypophysitis [RR]. Endocr Rev. 2005 Jan 5;26(5):599–614.
  • Leporati P, Landek-Salgado MA, Lupi I, et al. IgG4-related hypophysitis: a new addition to the hypophysitis spectrum [CR]. [Baltimore]. J Clin Endocrinol Metab. 2011 May 18;96(7):1971–1980.
  • Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001 Aug 2;345(5):340–350.
  • Caturegli P, Di Dalmazi G, Lombardi M, et al. Hypophysitis secondary to cytotoxic T-lymphocyte-associated protein 4 blockade: insights into pathogenesis from an autopsy series [CS]. [Baltimore]. Am J Pathol. 2016 Dec;186(12):3225–3235.
  • Mekki A, Dercle L, Lichtenstein P, et al. Machine learning defined diagnostic criteria for differentiating pituitary metastasis from autoimmune hypophysitis in patients undergoing immune checkpoint blockade therapy [IM]. [Paris]. Eur J Cancer. 2019 Aug;12(119):44–56.
  • Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma [CS]. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8372–8377.
  • Blansfield JA, Beck KE, Tran K, et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer [CS]. J Immunother. 2005 Nov–Dec;28(6):593–598.
  • Gutenberg A, Landek-Salgado MA, Tzou SC, et al. Autoimmune hypophysitis: expanding the differential diagnosis to CTLA-4 blockade [RR]. [Baltimore]. Expert Rev Endocrinol Metab. 2009;4(6):681–698.
  • Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017 Jan 18;541(7637):321–330.
  • Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily–CTLA-4. Nature. 1987 Jul 16-22;328(6127):267–270.
  • Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Annu Rev Immunol. 2006;24:65–97.
  • Alegre ML, Noel PJ, Eisfelder BJ, et al. Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J Immunol. 1996 Dec 1;157(11):4762–4770.
  • Egen JG, Allison JP. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity. 2002 Jan;16(1):23–35.
  • Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994 Aug;1(5):405–413.
  • Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995 Aug 1;182(2):459–465.
  • Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018 Sep;8(9):1069–1086.
  • Carreno BM, Bennett F, Chau TA, et al. CTLA-4 (CD152) can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression. J Immunol. 2000 Aug 1;165(3):1352–1356.
  • Olsson C, Riesbeck K, Dohlsten M, et al. CTLA-4 ligation suppresses CD28-induced NF-kappaB and AP-1 activity in mouse T cell blasts. J Biol Chem. 1999 May 14;274(20):14400–14405.
  • Dillon TJ, Carey KD, Wetzel SA, et al. Regulation of the small GTPase Rap1 and extracellular signal-regulated kinases by the costimulatory molecule CTLA-4. Mol Cell Biol. 2005 May;25(10):4117–4128.
  • Waterhouse P, JM P, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995 Nov 10;270(5238):985–988.
  • Tai X, Van Laethem F, Sharpe AH, et al. Induction of autoimmune disease in CTLA-4-/- mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13756–13761.
  • Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008 Oct 10;322(5899):271–275.
  • Paterson AM, Lovitch SB, Sage PT, et al. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med. 2015 Sep 21;212(10):1603–1621.
  • Iwama S, De Remigis A, Callahan MK, et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014 Apr 2;6(230):230ra45.
  • Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014 Dec;20(12):1410–1416.
  • Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003 May 29;423(6939):506–511.
  • Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.
  • Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo J. 1992;Nov;11(11):3887–3895.
  • Nielsen C, Ohm-Laursen L, Barington T, et al. Alternative splice variants of the human PD-1 gene. Cell Immunol. 2005 Jun;235(2):109–116.
  • Zilber E, Martin GE, Willberg CB, et al. Soluble plasma programmed death 1 (PD-1) and Tim-3 in primary HIV infection. Aids. 2019 Jun 1;33(7):1253–1256.
  • Yoshida J, Ishikawa T, Doi T, et al. Clinical significance of soluble forms of immune checkpoint molecules in advanced esophageal cancer. Med Oncol. 2019 May 27;36(7):60.
  • Hui E, Cheung J, Zhu J, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017 Mar 31;355(6332):1428–1433.
  • Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012 Jun 4;209(6):1201–1217.
  • Sen DR, Kaminski J, Barnitz RA, et al. The epigenetic landscape of T cell exhaustion. Science. 2016 Dec 2;354(6316):1165–1169.
  • Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999 Aug;11(2):141–151.
  • Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001 Jan 12;291(5502):319–322.
  • Lucas JA, Menke J, Rabacal WA, et al. Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J Immunol. 2008 Aug 15;181(4):2513–2521.
  • Prokunina L, Castillejo-Lopez C, Oberg F, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet. 2002 Dec;32(4):666–669.
  • Kroner A, Mehling M, Hemmer B, et al. A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol. 2005 Jul;58(1):50–57.
  • Ramagopal UA, Liu W, Garrett-Thomson SC, et al. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4223–e4232.
  • FS H, SJ O, DF M, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010 Aug 19;363(8):711–723.
  • Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011 Jun 30;364(26):2517–2526.
  • Chen H, Liakou CI, Kamat A, et al. Anti-CTLA-4 therapy results in higher CD4+ICOShi T cell frequency and IFN-gamma levels in both nonmalignant and malignant prostate tissues. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2729–2734.
  • von Euw E, Chodon T, Attar N, et al. CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J Transl Med. 2009 May 20;7:35.
  • Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017 Sep 7;170(6):1120–1133.e17.
  • Mencel J, Gargett T, Karanth N, et al. Thymic hyperplasia following double immune checkpoint inhibitor therapy in two patients with stage IV melanoma. Asia Pac J Clin Oncol. 2019 Aug 1;15(6):383–386. DOI:10.1111/ajco.13233
  • Robert L, Tsoi J, Wang X, et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin Cancer Res. 2014 May 1;20(9):2424–2432.
  • Arce Vargas F, Furness AJS, Litchfield K, et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell. 2018 Apr 9;33(4):649–663.e4.
  • Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012 Jun 28;366(26):2443–2454.
  • Im SJ, Hashimoto M, Gerner MY, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 2016 Sep 15;537(7620):417–421.
  • Nghiem PT, Bhatia S, Lipson EJ, et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med. 2016 Jun 30;374(26):2542–2552.
  • Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015 Apr 3;348(6230):124–128.
  • Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015 Jun 25;372(26):2509–2520.
  • Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015 Jan 22;372(4):311–319.
  • Kamada T, Togashi Y, Tay C, et al. PD-1(+) regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc Natl Acad Sci U S A. 2019 May 14;116(20):9999–10008.
  • Lemiale V, Meert AP, Vincent F, et al. Severe toxicity from checkpoint protein inhibitors: what intensive care physicians need to know? [RR]. [Paris]. Ann Intensive Care. 2019 Feb 1;9(1):25.
  • Khoja L, Day D, Chen T W-W, et al. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann Oncol. 2017 Oct 1;28(10):2377–2385.
  • Wang Q, Xu R. Immunotherapy-related adverse events (irAEs): extraction from FDA drug labels and comparative analysis. JAMIA Open. 2019 Apr;2(1):173–178.
  • Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018 Jan 11; 378(2):158–168.
  • Teulings HE, Limpens J, Jansen SN, et al. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol. 2015 Mar 1;33(7):773–781.
  • Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016 Nov 3;375(18):1749–1755.
  • Osorio JC, Ni A, Chaft JE, et al. Antibody-mediated thyroid dysfunction during T-cell checkpoint blockade in patients with non-small-cell lung cancer. Ann Oncol. 2017 Mar 1;28(3):583–589.
  • de Moel EC, Rozeman EA, Kapiteijn EH, et al. Autoantibody development under treatment with immune-checkpoint inhibitors [EA]. [Leiden]. Cancer Immunol Res. 2019 Jan;7(1):6–11.
  • Osum KC, Burrack AL, Martinov T, et al. Interferon-gamma drives programmed death-ligand 1 expression on islet beta cells to limit T cell function during autoimmune diabetes. Sci Rep. 2018 May 29;8(1):8295.
  • Tshuma N, Glynn N, Evanson J, et al. Hypothalamitis and severe hypothalamic dysfunction associated with anti-programmed cell death ligand 1 antibody treatment. Eur J Cancer. 2018;104:247–249.
  • Faje A, Reynolds K, Zubiri L, et al. Hypophysitis secondary to nivolumab and pembrolizumab is a clinical entity distinct from ipilimumab-associated hypophysitis [CH]. [Boston]. Eur J Endocrinol. 2019 Jun 1;181(3):211–219. DOI:10.1530/EJE-19-0238
  • Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 2018 Feb 1;4(2):173–182.
  • Lin AL, Jonsson P, Tabar V, et al. Marked response of a hypermutated ACTH-secreting pituitary carcinoma to ipilimumab and nivolumab. J Clin Endocrinol Metab. 2018 Oct 1;103(10):3925–3930.
  • Pouplard A, Bottazzo GF, Doniach D, et al. Binding of human immunoglobulins to pituitary ACTH cells. Nature. 1976 May 13;261(5556):142–144.
  • Sekizaki T, Kameda H, Oba C, et al. Nivolumab-induced hypophysitis causing secondary adrenal insufficiency after transient ACTH elevation [CR]. [Sapporo]. Endocrine J. 2019 Jun;19;66(10):937-994. DOI:10.1507/endocrj.EJ19-0076
  • Faje AT, Sullivan R, Lawrence D, et al. Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma [CS]. [Boston]. J Clin Endocrinol Metab. 2014;31:jc20142306.
  • Faje A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights [RR]. [Boston]. Pituitary. 2015 Jul 18;19(1):82–92. DOI:10.1007/s11102-015-0671-4
  • Min L, Hodi FS, Giobbie-Hurder A, et al. Systemic high dose corticosteroid treatment does not improve the outcome of ipilimumab-related hypophysitis: a retrospective cohort study [CS] . [Boston]. Clin Cancer Res. 2014 Dec23;21(4):749–755. DOI:10.1158/1078-0432.CCR-14-2353
  • Briet C, Albarel F, Kuhn E, et al. Expert opinion on pituitary complications in immunotherapy [RR]. [Angers]. Ann Endocrinol (Paris). 2018 Jul25;79(5):562–568. DOI:10.1016/j.ando.2018.07.008
  • Faje AT, Lawrence D, Flaherty K, et al. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer. 2018 Sep 15;124(18):3706–3714.
  • Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010 Jul 1;28(19):3167–3175.
  • Ohara N, Kobayashi M, Ohashi K, et al. Isolated adrenocorticotropic hormone deficiency and thyroiditis associated with nivolumab therapy in a patient with advanced lung adenocarcinoma: a case report and review of the literature [CR]. [Niigata]. J Med Case Rep. 2019 Mar 26;13(1):88.
  • Kanie K, Iguchi G, Bando H, et al. Two cases of atezolizumab-induced hypophysitis. J Endocr Soc. 2017;2(1):91–95.
  • Rassy E, Bakouny Z, Assi T, et al. The interaction of immune checkpoint inhibitor plus chemotherapy in non-small-cell lung cancer: subadditivity, additivity or synergism? Immunotherapy. 2019 Jul;11(10):913–920.
  • Chiloiro S, Capoluongo ED, Tartaglione T, et al. The changing clinical spectrum of hypophysitis. Trends Endocrinol Metab. 2019 Sep;30(9):590–602.
  • Fleseriu M, Hashim IA, Karavitaki N, et al. Hormonal replacement in hypopituitarism in adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016 Nov;101(11):3888–3921.
  • Grossman AB. Clinical review#: the diagnosis and management of central hypoadrenalism. J Clin Endocrinol Metab. 2010 Nov;95(11):4855–4863.
  • Kumar S, Berl T. Sodium. Lancet. 1998 Jul 18;352(9123):220–228.
  • Diederich S, Franzen NF, Bahr V, et al. Severe hyponatremia due to hypopituitarism with adrenal insufficiency: report on 28 cases. Eur J Endocrinol. 2003 Jun;148(6):609–617.
  • Rivier C, Vale W. Interaction of corticotropin-releasing factor and arginine vasopressin on adrenocorticotropin secretion in vivo. Endocrinology. 1983 Sep;113(3):939–942.
  • Raff H. Glucocorticoid inhibition of neurohypophysial vasopressin secretion. A J Physiol. 1987 Apr;252(4 Pt 2):R635–44.
  • Saito T, Ishikawa SE, Ando F, et al. Vasopressin-dependent upregulation of aquaporin-2 gene expression in glucocorticoid-deficient rats. Am J Physiol Renal Physiol. 2000 Sep;279(3):F502–8.
  • Yatagai T, Kusaka I, Nakamura T, et al. Close association of severe hyponatremia with exaggerated release of arginine vasopressin in elderly subjects with secondary adrenal insufficiency. Eur J Endocrinol. 2003 Feb;148(2):221–226.
  • Pazderska A, Pearce SH. Adrenal insufficiency - recognition and management. Clin Med (Lond). 2017 Jun;17(3):258–262.
  • Rushworth RL, Torpy DJ, Falhammar H. Adrenal crisis. N Engl J Med. 2019 Aug 29;381(9):852–861.
  • Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J Clin Oncol. 2018 Jun 10;36(17):1714–1768.
  • Albarel F, Castinetti F, Brue T. MANAGEMENT OF ENDOCRINE DISEASE: immune check point inhibitors-induced hypophysitis. Eur J Endocrinol. 2019 Sep 1;181(3):R107–r118.
  • Haanen J, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017 Jul 1;28(suppl_4):iv119–iv142.
  • De Sousa SMC, Sheriff N, Tran CH, et al. Fall in thyroid stimulating hormone (TSH) may be an early marker of ipilimumab-induced hypophysitis. Pituitary. 2018 Jun;21(3):274–282.
  • Tahir SA, Gao J, Miura Y, et al. Autoimmune antibodies correlate with immune checkpoint therapy-induced toxicities. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22246–22251.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.