4,523
Views
1
CrossRef citations to date
0
Altmetric
Review

Gut microbiota: a promising target against cardiometabolic diseases

ORCID Icon, , , , &
Pages 13-27 | Received 30 Sep 2019, Accepted 21 Jan 2020, Published online: 18 Feb 2020

References

  • Balakumar P, Maung UK, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res. 2016 Nov;113(Pt A):600–609. PubMed PMID: 27697647
  • Aron-Wisnewsky J, Clement K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol. 2016 Mar;12(3):169–181. PubMed PMID: 26616538
  • Mortality GBD, Causes of Death C. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10;385(9963):117–171. PubMed PMID: 25530442; PubMed Central PMCID: PMCPMC4340604.
  • Arroyo-Johnson C, Mincey KD. Obesity epidemiology worldwide. Gastroenterol Clin North Am. 2016 Dec;45(4): 571–579. PubMed PMID: 27837773; PubMed Central PMCID: PMCPMC5599163.
  • World Health Organization. Global report on diabetes. 2016.
  • Halter JB, Musi N, McFarland Horne F, et al. Diabetes and cardiovascular disease in older adults: current status and future directions. Diabetes. 2014 Aug;63(8):2578–2589. PubMed PMID: 25060886; PubMed Central PMCID: PMCPMC4113072.
  • Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019 Mar 5;139(10):e56–e528. PubMed PMID: 30700139.
  • Tang WHW, Backhed F, Landmesser U, et al. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019 Apr 30;73(16):2089–2105. PubMed PMID: 31023434; PubMed Central PMCID: PMCPMC6518422.
  • Tilg H, Zmora N, Adolph TE, et al. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020;20(1):40–54. PubMed PMID: 31388093
  • Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012 Oct 4;490(7418):55–60. PubMed PMID: 23023125.
  • Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013 Jun 6;498(7452):99–103. PubMed PMID: 23719380.
  • Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006 Feb 24;124(4):837–848. PubMed PMID: 16497592.
  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010 Mar 4;464(7285):59–65. PubMed PMID: 20203603; PubMed Central PMCID: PMCPMC3779803.
  • Scott KP, Gratz SW, Sheridan PO, et al. The influence of diet on the gut microbiota. Pharmacol Res. 2013 Mar;69(1):52–60. PubMed PMID: 23147033.
  • Sekirov I, Russell SL, Antunes LC, et al. Gut microbiota in health and disease. Physiol Rev. 2010 Jul;90(3):859–904. PubMed PMID: 20664075.
  • Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015 Oct;11(10):577–591. PubMed PMID: 26260141
  • Falony G, Vieira-Silva S, Raes J. Richness and ecosystem development across faecal snapshots of the gut microbiota. Nat Microbiol. 2018 May;3(5):526–528. 10.1038/s41564-018-0143-5. PubMed PMID: 29693658
  • Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017 Mar 31;120(7):1183–1196. PubMed PMID: 28360349; PubMed Central PMCID: PMCPMC5390330.
  • Smits SA, Leach J, Sonnenburg ED, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science. 2017 Aug 25;357(6353):802–806. PubMed PMID: 28839072; PubMed Central PMCID: PMCPMC5891123.
  • De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016 Nov;65(11):1812–1821. PubMed PMID: 26416813.
  • Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011 Oct 7;334(6052):105–108. PubMed PMID: 21885731; PubMed Central PMCID: PMCPMC3368382.
  • David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014 Jan 23;505(7484):559–563. PubMed PMID: 24336217; PubMed Central PMCID: PMCPMC3957428.
  • Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012 May 9;486(7402):222–227. PubMed PMID: 22699611; PubMed Central PMCID: PMCPMC3376388.
  • Caesar R, Reigstad CS, Backhed HK, et al. Gut-derived lipopolysaccharide augments adipose macrophage accumulation but is not essential for impaired glucose or insulin tolerance in mice. Gut. 2012 Dec;61(12):1701–1707. PubMed PMID: 22535377; PubMed Central PMCID: PMCPMC3505865.
  • Martinez-Medina M, Denizot J, Dreux N, et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut. 2014 Jan;63(1):116–124. PubMed PMID: 23598352.
  • Kopp W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes. 2019;12:2221–2236. PubMed PMID: 31695465; PubMed Central PMCID: PMCPMC6817492
  • Sottero B, Gargiulo S, Russo I, et al. Postprandial dysmetabolism and oxidative stress in Type 2 Diabetes: pathogenetic mechanisms and therapeutic strategies. Med Res Rev. 2015 Sep;35(5):968–1031. PubMed PMID: 25943420.
  • Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11070–11075. PubMed PMID: 16033867; PubMed Central PMCID: PMCPMC1176910.
  • Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013 Aug 29;500(7464):541–546. PubMed PMID: 23985870.
  • Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013 Aug 29;500(7464):585–588. PubMed PMID: 23985875.
  • Arany Z, Neinast M. Branched chain amino acids in metabolic disease. Curr Diab Rep. 2018 Aug 15;18(10):76. 10.1007/s11892-018-1048-7. PubMed PMID: 30112615
  • Allin KH, Tremaroli V, Caesar R, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018 Apr;61(4):810–820. 10.1007/s00125-018-4550-1. PubMed PMID: 29379988; PubMed Central PMCID: PMCPMC6448993
  • Liu Y, Wang Y, Ni Y, et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab. 2019 Nov 27. DOI:10.1016/j.cmet.2019.11.001. [ PubMed PMID: 31786155].
  • Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016 Jul 21;535(7612):376–381. PubMed PMID: 27409811.
  • Caesar R, Tremaroli V, Kovatcheva-Datchary P, et al. Crosstalk between Gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015 Oct 6;22(4):658–668. PubMed PMID: 26321659; PubMed Central PMCID: PMCPMC4598654.
  • Meessen ECE, Warmbrunn MV, Nieuwdorp M, et al. Human postprandial nutrient metabolism and low-grade inflammation: a narrative review. Nutrients. 2019 Dec 7;11(12):3000. PubMed PMID: 31817857.
  • Smith JD, Borel AL, Nazare JA, et al. Visceral adipose tissue indicates the severity of cardiometabolic risk in patients with and without type 2 diabetes: results from the INSPIRE ME IAA study. J Clin Endocrinol Metab. 2012 May;97(5):1517–1525. PubMed PMID: 22337910.
  • van den Munckhof ICL, Kurilshikov A, Ter Horst R, et al. Role of gut microbiota in chronic low- grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev. 2018 Dec;19(12):1719–1734. PubMed PMID: 30144260.
  • Mikelsaar M, Stsepetova J, Hutt P, et al. Intestinal Lactobacillus sp. is associated with some cellular and metabolic characteristics of blood in elderly people. Anaerobe. 2010 Jun;16(3):240–246. PubMed PMID: 20223288.
  • Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010 Dec;59(12):3049–3057. PubMed PMID: 20876719; PubMed Central PMCID: PMCPMC2992765.
  • Aron-Wisnewsky J, Prifti E, Belda E, et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut. 2019 Jan;68(1):70–82. PubMed PMID: 29899081.
  • Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007 Jul;56(7):1761–1772. PubMed PMID: 17456850.
  • Vreugdenhil AC, Rousseau CH, Hartung T, et al. Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. J Immunol. 2003 Feb 1;170(3):1399–1405. PubMed PMID: 12538700.
  • Neal MD, Leaphart C, Levy R, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol. 2006 Mar 1;176(5):3070–3079. PubMed PMID: 16493066.
  • Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda). 2016 Jul;31(4):283–293. PubMed PMID: 27252163
  • Horton F, Wright J, Smith L, et al. Increased intestinal permeability to oral chromium (51 Cr) - EDTA in human Type 2 diabetes. Diabet Med. 2014 May;31(5):559–563. PubMed PMID: 24236770.
  • Genser L, Aguanno D, Soula HA, et al. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J Pathol. 2018 Oct;246(2):217–230. PubMed PMID: 29984492.
  • Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018 Sep;67(9):1716–1725. PubMed PMID: 29934437; PubMed Central PMCID: PMCPMC6109275
  • Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol. 2016 Jan;16(1):35–50. PubMed PMID: 26711677
  • Steimle A, Autenrieth IB, Frick JS. Structure and function: lipid A modifications in commensals and pathogens. Int J Med Microbiol. 2016 Aug;306(5):290–301. PubMed PMID: 27009633
  • Li Y, Wang Z, Chen J, et al. Influence of lipid A acylation pattern on membrane permeability and innate immune stimulation. Mar Drugs. 2013 Aug 26;11(9):3197–3208. PubMed PMID: 24065161; PubMed Central PMCID: PMCPMC3806461.
  • Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014 Jan 1;6(1):a009191–a009191. PubMed PMID: 24384568; PubMed Central PMCID: PMCPMC3941218.
  • Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012 Mar 6;18(3):363–374. PubMed PMID: 22395709.
  • Kim JJ, Sears DD. TLR4 and insulin resistance. Gastroenterol Res Pract. 2010;2010:1–11. PubMed PMID: 20814545; PubMed Central PMCID: PMCPMC2931384
  • Cipriani S, Mencarelli A, Palladino G, et al. FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J Lipid Res. 2010 Apr;51(4):771–784. PubMed PMID: 19783811; PubMed Central PMCID: PMCPMC2842143.
  • Gineste R, Sirvent A, Paumelle R, et al. Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol Endocrinol. 2008 Nov;22(11):2433–2447. PubMed PMID: 18755856.
  • Ryan PM, Stanton C, Caplice NM. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol Metab Syndr. 2017;9:102. PubMed PMID: 29299069; PubMed Central PMCID: PMCPMC5745752
  • Koh A, Molinaro A, Stahlman M, et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell. 2018 Nov 1;175(4):947–961 e17. PubMed PMID: 30401435.
  • Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006 Dec 21;444(7122):1027–1031. PubMed PMID: 17183312.
  • Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009 Jul;58(7):1509–1517. PubMed PMID: 19366864; PubMed Central PMCID: PMCPMC2699871.
  • Wong JM, de Souza R, Kendall CW, et al. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006 Mar;40(3):235–243. PubMed PMID: 16633129.
  • Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987 Oct;28(10):1221–1227. PubMed PMID: 3678950; PubMed Central PMCID: PMCPMC1433442.
  • Al-Lahham SH, Peppelenbosch MP, Roelofsen H, et al. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta. 2010 Nov;1801(11):1175–1183. PubMed PMID: 20691280.
  • Delzenne NM, Williams CM. Prebiotics and lipid metabolism. Curr Opin Lipidol. 2002 Feb;13(1):61–67. PubMed PMID: 11790964
  • Peng L, He Z, Chen W, et al. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res. 2007 Jan;61(1):37–41. PubMed PMID: 17211138.
  • Bordin M, D’Atri F, Guillemot L, et al. Histone deacetylase inhibitors up-regulate the expression of tight junction proteins. Mol Cancer Res. 2004 Dec;2(12):692–701. PubMed PMID: 15634758
  • Tedelind S, Westberg F, Kjerrulf M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol. 2007 May 28;13(20):2826–2832. PubMed PMID: 17569118; PubMed Central PMCID: PMCPMC4395634.
  • Fukae J, Amasaki Y, Yamashita Y, et al. Butyrate suppresses tumor necrosis factor alpha production by regulating specific messenger RNA degradation mediated through a cis-acting AU-rich element. Arthritis Rheum. 2005 Sep;52(9):2697–2707. PubMed PMID: 16142751.
  • den Besten G, Bleeker A, Gerding A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARgamma-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015 Jul;64(7):2398–2408. PubMed PMID: 25695945.
  • Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012 Oct;143(4):913–6 e7. PubMed PMID: 22728514.
  • Bouter K, Bakker GJ, Levin E, et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin Transl Gastroenterol. 2018 May 25;9(5):155. 10.1038/s41424-018-0025-4. PubMed PMID: 29799027; PubMed Central PMCID: PMCPMC5968024
  • Wu WK, Hsu CC, Sheen LY, et al. Measurement of gut microbial metabolites in cardiometabolic health and translational research. Rapid Commun Mass Spectrom. 2019 Jul 25. DOI:10.1002/rcm.8537. [ PubMed PMID: 31344762].
  • Chen MX, Wang SY, Kuo CH, et al. Metabolome analysis for investigating host-gut microbiota interactions. J Formos Med Assoc. 2019 Mar;118 Suppl 1:S10–S22. PubMed PMID: 30269936.
  • Vernocchi P, Del Chierico F, Putignani L. Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health. Front Microbiol. 2016;7:1144. PubMed PMID: 27507964; PubMed Central PMCID: PMCPMC4960240
  • Chiang JY. Bile acids: regulation of synthesis. J Lipid Res. 2009 Oct;50(10):1955–1966. PubMed PMID: 19346330; PubMed Central PMCID: PMCPMC2739756
  • Sayin SI, Wahlstrom A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013 Feb 5;17(2):225–235. PubMed PMID: 23395169.
  • Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol. 2014 May 24;12:164. PubMed PMID: 24884764; PubMed Central PMCID: PMCPMC4041630.
  • Parker KD, Albeke SE, Gigley JP, et al. Microbiome composition in both wild-type and disease model mice is heavily influenced by mouse facility. Front Microbiol. 2018;9:1598. PubMed PMID: 30079054; PubMed Central PMCID: PMCPMC6062620
  • van Nierop FS, Scheltema MJ, Eggink HM, et al. Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol. 2017 Mar;5(3):224–233. PubMed PMID: 27639537.
  • Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009 Jan;89(1):147–191. PubMed PMID: 19126757.
  • Hylemon PB, Zhou H, Pandak WM, et al. Bile acids as regulatory molecules. J Lipid Res. 2009 Aug;50(8):1509–1520. PubMed PMID: 19346331; PubMed Central PMCID: PMCPMC2724047.
  • Miyazaki-Anzai S, Masuda M, Kohno S, et al. Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation. J Lipid Res. 2018 Sep;59(9):1709–1713. PubMed PMID: 29976576; PubMed Central PMCID: PMCPMC6121929.
  • Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005 Apr 1;329(1):386–390. PubMed PMID: 15721318.
  • Drucker DJ. The cardiovascular biology of glucagon-like Peptide-1. Cell Metab. 2016 Jul 12;24(1):15–30. PubMed PMID: 27345422.
  • Broeders EP, Nascimento EB, Havekes B, et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 2015 Sep 1;22(3):418–426. PubMed PMID: 26235421.
  • Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015 Feb;21(2):159–165. PubMed PMID: 25559344; PubMed Central PMCID: PMCPMC4320010.
  • Zhang HM, Wang X, Wu ZH, et al. Beneficial effect of farnesoid X receptor activation on metabolism in a diabetic rat model. Mol Med Rep. 2016 Mar;13(3):2135–2142. PubMed PMID: 26782298.
  • Joyce SA, MacSharry J, Casey PG, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7421–7426. PubMed PMID: 24799697; PubMed Central PMCID: PMCPMC4034235.
  • Joyce SA, Gahan CG. Bile acid modifications at the microbe-host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu Rev Food Sci Technol. 2016;7:313–333. PubMed PMID: 26772409
  • Kootte RS, Levin E, Salojarvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017 Oct 3;26(4):611–619 e6. PubMed PMID: 28978426.
  • de Groot P, Scheithauer T, Bakker GJ, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut. 2019 May 30. DOI:10.1136/gutjnl-2019-318320. [ PubMed PMID: 31147381].
  • Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut. 2013 Apr;62(4):531–539. PubMed PMID: 22993202.
  • Meigs JB, Wilson PW, Fox CS, et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J Clin Endocrinol Metab. 2006 Aug;91(8):2906–2912. PubMed PMID: 16735483.
  • Falk E, Fernandez-Ortiz A. Role of thrombosis in atherosclerosis and its complications. Am J Cardiol. 1995 Feb 23;75(6):3B–11B. PubMed PMID: 7863969.
  • Rafieian-Kopaei M, Setorki M, Doudi M, et al. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014 Aug;5(8):927–946. PubMed PMID: 25489440; PubMed Central PMCID: PMCPMC4258672
  • Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013 May;19(5):576–585. PubMed PMID: 23563705; PubMed Central PMCID: PMCPMC3650111.
  • Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr 7;472(7341):57–63. PubMed PMID: 21475195; PubMed Central PMCID: PMCPMC3086762.
  • Wiedermann CJ, Kiechl S, Dunzendorfer S, et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol. 1999 Dec;34(7):1975–1981. PubMed PMID: 10588212.
  • Caesar R, Fak F, Backhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med. 2010 Oct;268(4):320–328. PubMed PMID: 21050286
  • Lehr HA, Sagban TA, Ihling C, et al. Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation. 2001 Aug 21;104(8):914–920. PubMed PMID: 11514379.
  • Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A. 2011 Mar;15(108 Suppl 1):4592–4598. PubMed PMID: 20937873; PubMed Central PMCID: PMCPMC3063583.
  • Figuero E, Sanchez-Beltran M, Cuesta-Frechoso S, et al. Detection of periodontal bacteria in atheromatous plaque by nested polymerase chain reaction. J Periodontol. 2011 Oct;82(10):1469–1477. PubMed PMID: 21453047.
  • Grayston JT, Kronmal RA, Jackson LA, et al. Azithromycin for the secondary prevention of coronary events. N Engl J Med. 2005 Apr 21;352(16):1637–1645. PubMed PMID: 15843666.
  • Janeiro MH, Ramirez MJ, Milagro FI, et al. Implication of Trimethylamine N-Oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018 Oct 1;10(10):1398. PubMed PMID: 30275434; PubMed Central PMCID: PMCPMC6213249.
  • van der Veen JN, Kennelly JP, Wan S, et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr. 2017 Sep;1859(9 Pt B):1558–1572. PubMed PMID: 28411170.
  • Lang DH, Yeung CK, Peter RM, et al. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Biochem Pharmacol. 1998 Oct 15;56(8):1005–1012. PubMed PMID: 9776311.
  • Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013 Jan 8;17(1):49–60. PubMed PMID: 23312283; PubMed Central PMCID: PMCPMC3771112.
  • Hai X, Landeras V, Dobre MA, et al. Mechanism of Prominent Trimethylamine Oxide (TMAO) accumulation in hemodialysis patients. PLoS One. 2015;10(12):e0143731. PubMed PMID: 26650937; PubMed Central PMCID: PMCPMC4674074
  • Koeth RA, Lam-Galvez BR, Kirsop J, et al. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest. 2019 Jan 2;129(1):373–387. PubMed PMID: 30530985; PubMed Central PMCID: PMCPMC6307959.
  • Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013 Apr 25;368(17):1575–1584. PubMed PMID: 23614584; PubMed Central PMCID: PMCPMC3701945.
  • Wang Z, Tang WH, Buffa JA, et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014 Apr;35(14):904–910. PubMed PMID: 24497336; PubMed Central PMCID: PMCPMC3977137.
  • Skagen K, Troseid M, Ueland T, et al. The Carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis. 2016 Apr;247:64–69. PubMed PMID: 26868510.
  • Heianza Y, Ma W, Manson JE, et al. Gut microbiota metabolites and risk of major adverse cardiovascular disease events and death: a systematic review and meta-analysis of prospective studies. J Am Heart Assoc. 2017 Jun 29;6(7). PubMed PMID: 28663251; PubMed Central PMCID: PMCPMC5586261. DOI:10.1161/JAHA.116.004947.
  • Qi J, You T, Li J, et al. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies. J Cell Mol Med. 2018 Jan;22(1):185–194. PubMed PMID: 28782886; PubMed Central PMCID: PMCPMC5742728.
  • Schiattarella GG, Sannino A, Toscano E, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose- response meta-analysis. Eur Heart J. 2017 Oct 14;38(39):2948–2956. PubMed PMID: 29020409.
  • Gregory JC, Buffa JA, Org E, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015 Feb 27;290(9):5647–5660. PubMed PMID: 25550161; PubMed Central PMCID: PMCPMC4342477.
  • Shimizu M, Cashman JR, Yamazaki H. Transient trimethylaminuria related to menstruation. BMC Med Genet. 2007 Jan 27;8:2. PubMed PMID: 17257434; PubMed Central PMCID: PMCPMC1790885.
  • Lindskog Jonsson A, Caesar R, Akrami R, et al. Impact of gut microbiota and diet on the development of atherosclerosis in Apoe(-/-) mice. Arterioscler Thromb Vasc Biol. 2018 Oct;38(10):2318–2326. PubMed PMID: 29903735; PubMed Central PMCID: PMCPMC6166703.
  • Wright SD, Burton C, Hernandez M, et al. Infectious agents are not necessary for murine atherogenesis. J Exp Med. 2000 Apr 17;191(8):1437–1442. PubMed PMID: 10770809; PubMed Central PMCID: PMCPMC2193142.
  • Kiouptsi K, Jackel S, Pontarollo G, et al. The microbiota promotes arterial thrombosis in low- density lipoprotein receptor-deficient mice. mBio. 2019 Oct 22;10(5). PubMed PMID: 31641089; PubMed Central PMCID: PMCPMC6805995. DOI:10.1128/mBio.02298-19.
  • Kasahara K, Tanoue T, Yamashita T, et al. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J Lipid Res. 2017 Mar;58(3):519–528. PubMed PMID: 28130274; PubMed Central PMCID: PMCPMC5335582.
  • Stepankova R, Tonar Z, Bartova J, et al. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J Atheroscler Thromb. 2010 Aug 31;17(8):796–804. PubMed PMID: 20379054.
  • Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016 Mar 24;165(1):111–124. PubMed PMID: 26972052; PubMed Central PMCID: PMCPMC4862743.
  • Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc. 2016 Feb 22;5(2). PubMed PMID: 26903003; PubMed Central PMCID: PMCPMC4802459. DOI:10.1161/JAHA.115.002767.
  • Kaysen GA, Johansen KL, Chertow GM, et al. Associations of trimethylamine n-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J Ren Nutr. 2015 Jul;25(4):351–356. PubMed PMID: 25802017; PubMed Central PMCID: PMCPMC4469547.
  • Smits LP, Kootte RS, Levin E, et al. Effect of vegan fecal microbiota transplantation on carnitine- and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome. J Am Heart Assoc. 2018 Mar 26;7(7). PubMed PMID: 29581220; PubMed Central PMCID: PMCPMC5907601. DOI:10.1161/JAHA.117.008342.
  • Emoto T, Yamashita T, Sasaki N, et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb. 2016 Aug 1;23(8):908–921. PubMed PMID: 26947598.
  • Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017 Oct 10;8(1):845. PubMed PMID: 29018189; PubMed Central PMCID: PMCPMC5635030.
  • Aguilar EC, Leonel AJ, Teixeira LG, et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFkappaB activation. Nutr Metab Cardiovasc Dis. 2014 Jun;24(6):606–613. PubMed PMID: 24602606.
  • Kasahara K, Krautkramer KA, Org E, et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol. 2018 Dec;3(12):1461–1471. 10.1038/s41564-018-0272-x. PubMed PMID: 30397344; PubMed Central PMCID: PMCPMC6280189
  • Meyer KA, Shea JW. Dietary choline and betaine and risk of CVD: a systematic review and meta-analysis of prospective studies. Nutrients. 2017 Jul 7;9(7):711. PubMed PMID: 28686188; PubMed Central PMCID: PMCPMC5537826.
  • Arakawa M, Mita T, Azuma K, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin- 4. Diabetes. 2010 Apr;59(4):1030–1037. PubMed PMID: 20068138; PubMed Central PMCID: PMCPMC2844811.
  • Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21307–21312. PubMed PMID: 23151509; PubMed Central PMCID: PMCPMC3535645.
  • Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015 Dec 17;163(7):1585–1595. PubMed PMID: 26687352; PubMed Central PMCID: PMCPMC4871610.
  • Chittim CL, Martinez Del Campo A, Balskus EP. Gut bacterial phospholipase Ds support disease-associated metabolism by generating choline. Nat Microbiol. 2019 Jan;4(1):155–163. 10.1038/s41564-018-0294-4. PubMed PMID: 30455469
  • Washburn RL, Cox JE, Muhlestein JB, et al. Pilot study of novel intermittent fasting effects on metabolomic and trimethylamine N-oxide changes during 24-hour water-only fasting in the FEELGOOD trial. Nutrients. 2019 Jan 23;11(2):246. PubMed PMID: 30678028; PubMed Central PMCID: PMCPMC6412259.
  • Erickson ML, Malin SK, Wang Z, et al. Effects of lifestyle intervention on plasma trimethylamine N-oxide in obese adults. Nutrients. 2019 Jan 16;11(1):179. PubMed PMID: 30654453; PubMed Central PMCID: PMCPMC6356515.
  • Jackel S, Kiouptsi K, Lillich M, et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood. 2017 Jul 27;130(4):542–553. PubMed PMID: 28572286.
  • Karlsson FH, Fak F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245. PubMed PMID: 23212374; PubMed Central PMCID: PMCPMC3538954
  • Oliveira-Nascimento L, Massari P, Wetzler LM. The role of TLR2 in infection and immunity. Front Immunol. 2012;3:79. PubMed PMID: 22566960; PubMed Central PMCID: PMCPMC3342043
  • Zhu W, Wang Z, Tang WHW, et al. Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation. 2017 Apr 25;135(17):1671–1673. PubMed PMID: 28438808; PubMed Central PMCID: PMCPMC5460631.
  • Zhang Y, Zheng X, Huang F, et al. Ursodeoxycholic acid alters bile acid and fatty acid profiles in a mouse model of diet-induced obesity. Front Pharmacol. 2019;10:842. PubMed PMID: 31402868; PubMed Central PMCID: PMCPMC6669341
  • Chen YS, Liu HM, Lee TY. Ursodeoxycholic acid regulates hepatic energy homeostasis and white adipose tissue macrophages polarization in leptin-deficiency obese mice. Cells. 2019 Mar 16;8(3). PubMed PMID: 30884843; PubMed Central PMCID: PMCPMC6468643. DOI:10.3390/cells8030253
  • Hartman HB, Gardell SJ, Petucci CJ, et al. Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR-/- and apoE-/- mice. J Lipid Res. 2009 Jun;50(6):1090–1100. PubMed PMID: 19174369; PubMed Central PMCID: PMCPMC2681391.
  • Mencarelli A, Renga B, Distrutti E, et al. Antiatherosclerotic effect of farnesoid X receptor. Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H272–H281. PubMed PMID: 19028791.
  • Jadhav K, Xu Y, Xu Y, et al. Reversal of metabolic disorders by pharmacological activation of bile acid receptors TGR5 and FXR. Mol Metab. 2018 Mar;9:131–140. PubMed PMID: 29361497; PubMed Central PMCID: PMCPMC5870099.
  • Krishnan S, Ding Y, Saedi N, et al. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 2018 Apr 24;23(4):1099–1111. PubMed PMID: 29694888; PubMed Central PMCID: PMCPMC6392449.
  • Tobias DK, Lawler PR, Harada PH, et al. Circulating branched-chain amino acids and incident cardiovascular disease in a prospective cohort of US women. Circ Genom Precis Med. 2018 Apr;11(4):e002157. PubMed PMID: 29572205; PubMed Central PMCID: PMCPMC5880282.
  • Wang X, He G, Peng Y, et al. Sodium butyrate alleviates adipocyte inflammation by inhibiting NLRP3 pathway. Sci Rep. 2015 Aug;3(5):12676. PubMed PMID: 26234821; PubMed Central PMCID: PMCPMC4522654.
  • Vinolo MA, Rodrigues HG, Festuccia WT, et al. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab. 2012 Jul 15;303(2):E272–E282. PubMed PMID: 22621868.
  • Guo CJ, Chang FY, Wyche TP, et al. Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell. 2017 Jan 26;168(3):517–526 e18. PubMed PMID: 28111075; PubMed Central PMCID: PMCPMC5302092.
  • Donia MS, Cimermancic P, Schulze CJ, et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell. 2014 Sep 11;158(6):1402–1414. PubMed PMID: 25215495; PubMed Central PMCID: PMCPMC4164201.
  • Tahri K, Grille JP, Schneider F. Bifidobacteria strain behavior toward cholesterol: coprecipitation with bile salts and assimilation. Curr Microbiol. 1996;33(3):187–193.
  • Nguyen TD, Kang JH, Lee MS. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol. 2007 Feb 15;113(3):358–361. PubMed PMID: 17140690.
  • Qiu L, Tao X, Xiong H, et al. Lactobacillus plantarum ZDY04 exhibits a strain-specific property of lowering TMAO via the modulation of gut microbiota in mice. Food Funct. 2018 Aug 15;9(8):4299–4309. PubMed PMID: 30039147.
  • Fang Y, Chen HQ, Zhang X, et al. Probiotic administration of lactobacillus rhamnosus GR-1 attenuates atherosclerotic plaque formation in ApoE-/- mice fed with a high-fat diet. Eur Rev Med Pharmacol Sci. 2019 Apr;23(8):3533–3541. PubMed PMID: 31081110.
  • Costabile A, Buttarazzi I, Kolida S, et al. An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS One. 2017;12(12):e0187964. PubMed PMID: 29228000; PubMed Central PMCID: PMCPMC5724841
  • Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9066–9071. PubMed PMID: 23671105; PubMed Central PMCID: PMCPMC3670398.
  • Li J, Lin S, Vanhoutte PM, et al. akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/- mice. Circulation. 2016 Jun 14;133(24):2434–2446. PubMed PMID: 27143680.
  • Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017 Jan;23(1):107–113. PubMed PMID: 27892954.
  • Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019 Jul;25(7):1096–1103. 10.1038/s41591-019-0495-2. PubMed PMID: 31263284; PubMed Central PMCID: PMCPMC6699990
  • Hu XF, Zhang WY, Wen Q, et al. Fecal microbiota transplantation alleviates myocardial damage in myocarditis by restoring the microbiota composition. Pharmacol Res. 2019 Jan;139:412–421. PubMed PMID: 30508676.
  • Sun L, Pang Y, Wang X, et al. Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters. Acta Pharm Sin B. 2019 Jul;9(4):702–710. PubMed PMID: 31384531; PubMed Central PMCID: PMCPMC6664038.
  • Carvalho BM, Guadagnini D, Tsukumo DML, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012 Oct;55(10):2823–2834. 10.1007/s00125-012-2648-4. PubMed PMID: 22828956
  • Brunt VE, Gioscia‐Ryan RA, Richey JJ, et al. Suppression of the gut microbiome ameliorates age-related arterial dysfunction and oxidative stress in mice. J Physiol. 2019 May;597(9):2361–2378. PubMed PMID: 30714619; PubMed Central PMCID: PMCPMC6487935.
  • Vrieze A, Out C, Fuentes S, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol. 2014 Apr;60(4):824–831. PubMed PMID: 24316517.
  • Reijnders D, Goossens GH, Hermes GD, et al. Effects of Gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo- controlled trial. Cell Metab. 2016 Jul 12;24(1):63–74. PubMed PMID: 27411009.
  • Heianza Y, Zheng Y, Ma W, et al. Duration and life-stage of antibiotic use and risk of cardiovascular events in women. Eur Heart J. 2019 Apr;24(40):3838–3845. PubMed PMID: 31216010.