262
Views
2
CrossRef citations to date
0
Altmetric
Review

Update on: effects of anti-diabetic drugs on bone metabolism

ORCID Icon & ORCID Icon

References

  • Federation ID. 2019. IDF Diabetes Atlas. 9th ed. Brussels (Belgium): International Diabetes Federation.
  • Danielson KK, Elliott ME, LeCaire T, et al. Poor glycemic control is associated with low BMD detected in premenopausal women with type 1 diabetes. Osteoporos Int. 2009 Jun;20(6):923–933.
  • Tuominen JT, Impivaara O, Puukka P, et al. Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes care. 1999 Jul;22(7):1196–1200. DOI:10.2337/diacare.22.7.1196.
  • Janghorbani M, Van Dam RM, Willett WC, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007 Sep 1;166(5):495–505.
  • Schwartz AV, Vittinghoff E, Bauer DC, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA. 2011 Jun 1;305(21):2184–2192. DOI:10.1001/jama.2011.715. .
  • Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int. 2007 Apr;18(4):427–444.
  • Forsen L, Meyer HE, Midthjell K, et al. Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trondelag Health Survey. Diabetologia. 1999 Aug;42(8):920–925. DOI:10.1007/s001250051248.
  • Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009 Jan;84(1):45–55.
  • Balint E, Szabo P, Marshall CF, et al. Glucose-induced inhibition of in vitro bone mineralization. Bone. 2001 Jan;28(1):21–28. DOI:10.1016/S8756-3282(00)00426-9.
  • Nyomba BL, Verhaeghe J, Thomasset M, et al. Bone mineral homeostasis in spontaneously diabetic BB rats. I. Abnormal vitamin D metabolism and impaired active intestinal calcium absorption. Endocrinology. 1989 Feb;124(2):565–572. DOI:10.1210/endo-124-2-565.
  • Saito M, Fujii K, Mori Y, et al. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006 Oct;17(10):1514–1523. DOI:10.1007/s00198-006-0155-5.
  • Vashishth D, Gibson GJ, Khoury JI, et al. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001 Feb;28(2):195–201. DOI:10.1016/S8756-3282(00)00434-8.
  • Meier C, Schwartz AV, Egger A, et al. Effects of diabetes drugs on the skeleton. Bone. 2016 Jan;82:93-100.
  • Montagnani A, Gonnelli S. Antidiabetic therapy effects on bone metabolism and fracture risk. Diabetes Obes Metab. 2013 Sep;15(9):784–791.
  • Kahn SE, Zinman B, Lachin JM, et al. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes care. 2008 May;31(5):845–851. DOI:10.2337/dc07-2270.
  • Organization WH. WHO model list of essential medicines. 2019. Geneva (Switzerland): World Health Organization
  • Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001 Oct;108(8):1167–1174. DOI:10.1172/JCI13505.
  • Zhang CS, Li M, Ma T, et al. Metformin Activates AMPK through the Lysosomal Pathway. Cell Metab. 2016 Oct 11;24(4):521–522.
  • Lv Z, Guo Y. Metformin and Its Benefits for Various Diseases. Front Endocrinol (Lausanne). 2020;11:191.
  • Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010 Jul;120(7):2355–2369. DOI:10.1172/JCI40671.
  • Klip A, Leiter LA. Cellular mechanism of action of metformin. Diabetes care. 1990 Jun;13(6):696–704.
  • Jang WG, Kim EJ, Bae IH, et al. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone. 2011 Apr 1;48(4):885–893.
  • Jang WG, Kim EJ, Lee KN, et al. AMP-activated protein kinase (AMPK) positively regulates osteoblast differentiation via induction of Dlx5-dependent Runx2 expression in MC3T3E1 cells. Biochem Biophys Res Commun. 2011 Jan 28;404(4):1004–1009.
  • Kanazawa I, Yamaguchi T, Yano S, et al. Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun. 2008 Oct 24;375(3):414–419.
  • Lee YS, Kim YS, Lee SY, et al. AMP kinase acts as a negative regulator of RANKL in the differentiation of osteoclasts. Bone. 2010 Nov;47(5):926–937. DOI:10.1016/j.bone.2010.08.001.
  • Mai QG, Zhang ZM, Xu S, et al. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem. 2011 Oct;112(10):2902–2909. DOI:10.1002/jcb.23206.
  • Jeyabalan J, Viollet B, Smitham P, et al. The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing. Osteoporos Int. 2013 Oct;24(10):2659–2670. DOI:10.1007/s00198-013-2371-0.
  • Colhoun HM, Livingstone SJ, Looker HC, et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia. 2012 Nov;55(11):2929–2937. DOI:10.1007/s00125-012-2668-0.
  • Kanazawa I, Yamaguchi T, Yamamoto M, et al. Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. J Bone Miner Metab. 2010 Sep;28(5):554–560. DOI:10.1007/s00774-010-0160-9.
  • Monami M, Cresci B, Colombini A, et al. Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case-control study. Diabetes care. 2008 Feb;31(2):199–203. DOI:10.2337/dc07-1736.
  • Napoli N, Strotmeyer ES, Ensrud KE, et al. Fracture risk in diabetic elderly men: the MrOS study. Diabetologia. 2014 Oct;57(10):2057–2065. DOI:10.1007/s00125-014-3289-6.
  • Meier C, Kraenzlin ME, Bodmer M, et al. Use of thiazolidinediones and fracture risk. Arch Intern Med. 2008 Apr 28;168(8):820–825.
  • Melton LJ 3rd, Leibson CL, Achenbach SJ, et al. Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res. 2008 Aug;23(8):1334–1342. DOI:10.1359/jbmr.080323.
  • Li B, Zhou P, Xu K, et al. Metformin induces cell cycle arrest, apoptosis and autophagy through ROS/JNK signaling pathway in human osteosarcoma. Int J Biol Sci. 2020;16(1):74–84. DOI:10.7150/ijbs.33787.
  • Li Z, Wang L, Luo N, et al. Metformin inhibits the proliferation and metastasis of osteosarcoma cells by suppressing the phosphorylation of Akt. Oncol Lett. 2018 May;15(5):7948–7954.
  • Xu HY, Fang W, Huang ZW, et al. Metformin reduces SATB2-mediated osteosarcoma stem cell-like phenotype and tumor growth via inhibition of N-cadherin/NF-kB signaling. Eur Rev Med Pharmacol Sci. 2017 Oct;21(20):4516–4528.
  • Dong C, Yang H, Wang Y, et al. Anagliptin stimulates osteoblastic cell differentiation and mineralization. Biomed Pharmacother. 2020 Jun;16(129):109796. DOI:10.1016/j.biopha.2019.109796.
  • Sbaraglini ML, Molinuevo MS, Sedlinsky C, et al. Saxagliptin affects long-bone microarchitecture and decreases the osteogenic potential of bone marrow stromal cells. Eur J Pharmacol. 2014 Mar;15(727):8–14. DOI:10.1016/j.ejphar.2014.01.028.
  • Ishida M, Shen WR, Kimura K, et al. DPP-4 inhibitor impedes lipopolysaccharide-induced osteoclast formation and bonere sorption in vivo. Biomed Pharmacother. 2019 Jan;109:242–253.
  • Wang C, Xiao F, Qu X, et al. Sitagliptin, An Anti-diabetic Drug, Suppresses Estrogen Deficiency-Induced OsteoporosisIn Vivo and Inhibits RANKL-Induced Osteoclast Formation and Bone Resorption In Vitro. Front Pharmacol. 2017;8:407.
  • Kyle KA, Willett TL, Baggio LL, et al. Differential effects of PPAR-{gamma} activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice. Endocrinology. 2011 Feb;152(2):457–467. DOI:10.1210/en.2010-1098.
  • Cusick T, Mu J, Pennypacker BL, et al. Bone loss in the oestrogen-depleted rat is not exacerbated by sitagliptin, either alone or in combination with a thiazolidinedione. Diabetes Obes Metab. 2013 Oct;15(10):954–957. DOI:10.1111/dom.12109.
  • Glorie L, Behets GJ, Baerts L, et al. DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats. Am J Physiol Endocrinol Metab. 2014 Sep 1;307(5):E447–55.
  • Mansur SA, Mieczkowska A, Flatt PR, et al. Sitagliptin Alters Bone Composition in High-Fat-Fed Mice. Calcif Tissue Int. 2019 Apr;104(4):437–448. DOI:10.1007/s00223-018-0507-0.
  • Bautista CRG, Santos IVD, Moraes RM, et al. Sitagliptin’s effects on bone tissue and osseointegration in diabetic rats. Arch Oral Biol. 2019 Jun;102:238–243.
  • Charoenphandhu N, Suntornsaratoon P, Sa-Nguanmoo P, et al. Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin, Improves Trabecular Bone Mineral Density and Microstructure in Obese, Insulin-Resistant, Pre-diabetic Rats. Can J Diabetes. 2018 Oct;42(5):545–552.
  • Eom YS, Gwon AR, Kwak KM, et al. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats. PLoS One. 2016;11(12):e0168569. DOI:10.1371/journal.pone.0168569.
  • Gallagher EJ, Sun H, Kornhauser C, et al. The effect of dipeptidyl peptidase-IV inhibition on bone in a mouse model of type 2 diabetes. Diabetes Metab Res Rev. 2014 Mar;30(3):191–200. DOI:10.1002/dmrr.2466.
  • Weivoda MM, Chew CK, Monroe DG, et al. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat Commun. 2020 Jan 7;11(1):87. .
  • Kim SW, Cho EH. High Levels of Serum DPP-4 Activity Are Associated with Low Bone Mineral Density in Obese Postmenopausal Women. Endocrinol Metab (Seoul). 2016 Mar;31(1):93–99.
  • Notsu M, Kanazawa I, Tanaka S, et al. Serum dipeptidyl peptidase-4 is associated with multiple vertebral fractures in type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2016 Mar;84(3):332–337. DOI:10.1111/cen.12971.
  • Monami M, Dicembrini I, Antenore A, et al. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes care. 2011 Nov;34(11):2474–2476. DOI:10.2337/dc11-1099.
  • Bunck MC, Poelma M, Eekhoff EM, et al. Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients. J Diabetes. 2012 Jun;4(2):181–185. DOI:10.1111/j.1753-0407.2011.00168.x.
  • Driessen JH, van den Bergh JP, van Onzenoort HA, et al. Long-term use of dipeptidyl peptidase-4 inhibitors and risk of fracture: A retrospective population-based cohort study. Diabetes Obes Metab. 2017 Mar;19(3):421–428. DOI:10.1111/dom.12843.
  • Driessen JH, van Onzenoort HA, Henry RM, et al. Use of dipeptidyl peptidase-4 inhibitors for type 2 diabetes mellitus and risk of fracture. Bone. 2014 Nov;68:124–130.
  • Engel SS, Suryawanshi S, Stevens SR, et al. Safety of sitagliptin in patients with type 2 diabetes and chronic kidney disease: outcomes from TECOS. Diabetes Obes Metab. 2017 Nov;19(11):1587–1593. DOI:10.1111/dom.12983.
  • Fu J, Zhu J, Hao Y, et al. Dipeptidyl peptidase-4 inhibitors and fracture risk: an updated meta-analysis of randomized clinical trials. Sci Rep. 2016 Jul 7;6:29104. .
  • Gamble JM, Donnan JR, Chibrikov E, et al. The risk of fragility fractures in new users of dipeptidyl peptidase-4 inhibitors compared to sulfonylureas and other anti-diabetic drugs: A cohort study. Diabetes Res Clin Pract. 2018 Feb;136:159–167.
  • Hirshberg B, Parker A, Edelberg H, et al. Safety of saxagliptin: events of special interest in 9156 patients with type 2 diabetes mellitus. Diabetes Metab Res Rev. 2014 Oct;30(7):556–569. DOI:10.1002/dmrr.2502.
  • Josse RG, Majumdar SR, Zheng Y, et al. Sitagliptin and risk of fractures in type 2 diabetes: Results from the TECOS trial. Diabetes Obes Metab. 2017 Jan;19(1):78–86. DOI:10.1111/dom.12786.
  • Majumdar SR, Josse RG, Lin M, et al. Does Sitagliptin Affect the Rate of Osteoporotic Fractures in Type 2 Diabetes? Population-Based Cohort Study. J Clin Endocrinol Metab. 2016 May;101(5):1963–1969. DOI:10.1210/jc.2015-4180.
  • Mosenzon O, Wei C, Davidson J, et al. Incidence of Fractures in Patients With Type 2 Diabetes in the SAVOR-TIMI 53 Trial. Diabetes care. 2015 Nov;38(11):2142–2150. DOI:10.2337/dc15-1068.
  • Ustulin M, Park SY, Choi H, et al. Effect of Dipeptidyl Peptidase-4 Inhibitors on the Risk of Bone Fractures in a Korean Population. J Korean Med Sci. 2019 Sep 9;34(35):e224.
  • Vianna AGD, de Lacerda CS, Pechmann LM, et al. Vildagliptin has the same safety profile as a sulfonylurea on bone metabolism and bone mineral density in post-menopausal women with type 2 diabetes: a randomized controlled trial. Diabetol Metab Syndr. 2017;9:35.
  • Yang J, Huang C, Wu S, et al. The effects of dipeptidyl peptidase-4 inhibitors on bone fracture among patients with type 2 diabetes mellitus: A network meta-analysis of randomized controlled trials. PLoS One. 2017;12(12):e0187537. DOI:10.1371/journal.pone.0187537.
  • Defronzo RA. Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes care. 2011 Apr;34(4):789–794.
  • Framnes-DeBoer SN, Bakke E, Yalamanchili S, et al. Bromocriptine improves glucose tolerance independent of circadian timing, prolactin, or the melanocortin-4 receptor. Am J Physiol Endocrinol Metab. 2020 Jan 1;318(1):E62–E71.
  • Ashcroft FM. Mechanisms of the glycaemic effects of sulfonylureas. Horm Metab Res. 1996 Sep;28(9):456–463.
  • Ma P, Gu B, Ma J, et al. Glimepiride induces proliferation and differentiation of rat osteoblasts via the PI3-kinase/Akt pathway. Metabolism. 2010 Mar;59(3):359–366. DOI:10.1016/j.metabol.2009.08.003.
  • Ma P, Xiong W, Liu H, et al. Extrapancreatic roles of glimepiride on osteoblasts from rat manibular bone in vitro: Regulation of cytodifferentiation through PI3-kinases/Akt signalling pathway. Arch Oral Biol. 2011 Apr;56(4):307–316. DOI:10.1016/j.archoralbio.2010.10.009.
  • Fronczek-Sokol J, Pytlik M. Effect of glimepiride on the skeletal system of ovariectomized and non-ovariectomized rats. Pharmacol Rep. 2014 Jun;66(3):412–417.
  • Yang X, Qu C, Jia J, et al. NLRP3 inflammasome inhibitor glyburide expedites diabetic-induced impaired fracture healing. Immunobiology. 2019 Nov;224(6):786–791.
  • Dormuth CR, Carney G, Carleton B, et al. Thiazolidinediones and fractures in men and women. Arch Intern Med. 2009 Aug 10;169(15):1395–1402.
  • Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005 Jul;48(7):1292–1299.
  • Gilbert MP, Marre M, Holst JJ, et al. Comparison of the Long-Term Effects of Liraglutide and Glimepiride Monotherapy on Bone Mineral Density in Patients with Type 2 Diabetes. Endocr Pract. 2016 Apr;22(4):406–411.
  • Lecka-Czernik B, Moerman EJ, Grant DF, et al. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology. 2002 Jun;143(6):2376–2384. DOI:10.1210/endo.143.6.8834.
  • Mieczkowska A, Basle MF, Chappard D, et al. Thiazolidinediones induce osteocyte apoptosis by a G protein-coupled receptor 40-dependent mechanism. J Biol Chem. 2012 Jul 6;287(28):23517–23526.
  • Smith NJ, Stoddart LA, Devine NM, et al. The action and mode of binding of thiazolidinedione ligands at free fatty acid receptor 1. J Biol Chem. 2009 Jun 26;284(26):17527–17539.
  • Stoddart LA, Brown AJ, Milligan G. Uncovering the pharmacology of the G protein-coupled receptor GPR40: high apparent constitutive activity in guanosine 5ʹ-O-(3-[35S]thio)triphosphate binding studies reflects binding of an endogenous agonist. Mol Pharmacol. 2007 Apr;71(4):994–1005.
  • Rzonca SO, Suva LJ, Gaddy D, et al. Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology. 2004 Jan;145(1):401–406. DOI:10.1210/en.2003-0746.
  • Chappard D, Marchand-Libouban H, Moreau MF, et al. Thiazolidinediones cause compaction of nuclear heterochromatin in the pluripotent mesenchymal cell line C3H10T1/2 when inducing an adipogenic phenotype. Anal Quant Cytopathol Histpathol. 2013 Apr;35(2):85–94.
  • Okazaki R, Toriumi M, Fukumoto S, et al. Thiazolidinediones inhibit osteoclast-like cell formation and bone resorption in vitro. Endocrinology. 1999 Nov;140(11):5060–5065. DOI:10.1210/endo.140.11.7116.
  • Soroceanu MA, Miao D, Bai XY, et al. Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol. 2004 Oct;183(1):203–216. DOI:10.1677/joe.1.05723.
  • Mabilleau G, Mieczkowska A, Edmonds ME. Thiazolidinediones induce osteocyte apoptosis and increase sclerostin expression. Diabet Med. 2010 Aug;27(8):925–932.
  • Kang JH, Kwak HJ, Choi HE, et al. Involvement of Prolyl Hydroxylase Domain Protein in the Rosiglitazone-Induced Suppression of Osteoblast Differentiation. PLoS One. 2015;10(9):e0139093.
  • Kraakman MJ, Liu Q, Postigo-Fernandez J, et al. PPARgamma deacetylation dissociates thiazolidinedione’s metabolic benefits from its adverse effects. J Clin Invest. 2018 Jun 1;128(6):2600–2612.
  • Yamato H, Okazaki R, Ishii T, et al. Effect of 24R,25-dihydroxyvitamin D3 on the formation and function of osteoclastic cells. Calcif Tissue Int. 1993 Mar;52(3):255–260. DOI:10.1007/BF00298729.
  • Chan BY, Gartland A, Wilson PJ, et al. PPAR agonists modulate human osteoclast formation and activity in vitro. Bone. 2007 Jan;40(1):149–159. DOI:10.1016/j.bone.2006.07.029.
  • Mbalaviele G, Abu-Amer Y, Meng A, et al. Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem. 2000 May 12;275(19):14388–14393.
  • Meymeh RH, Wooltorton E. Diabetes drug pioglitazone (Actos): risk of fracture. CMAJ. 2007 Sep 25;177(7):723–724.
  • Schwartz AV, Sellmeyer DE, Vittinghoff E, et al. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab. 2006 Sep;91(9):3349–3354. DOI:10.1210/jc.2005-2226.
  • Grey A, Bolland M, Gamble G, et al. The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab. 2007 Apr;92(4):1305–1310. DOI:10.1210/jc.2006-2646.
  • Berberoglu Z, Gursoy A, Bayraktar N, et al. Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab. 2007 Sep;92(9):3523–3530.
  • Ton FN, Gunawardene SC, Lee H, et al. Effects of low-dose prednisone on bone metabolism. J Bone Miner Res. 2005 Mar;20(3):464–470. DOI:10.1359/JBMR.041125.
  • Miller CG, Bogado CC, Nino AJ, et al. Evaluation of Quantitative Computed Tomography Cortical Hip Quadrant in a Clinical Trial With Rosiglitazone: A Potential New Study Endpoint. J Clin Densitom. 2016 Oct;19(4):485–491. DOI:10.1016/j.jocd.2016.02.003.
  • Schwartz AV, Chen H, Ambrosius WT, et al. Effects of TZD Use and Discontinuation on Fracture Rates in ACCORD Bone Study. J Clin Endocrinol Metab. 2015 Nov;100(11):4059–4066. DOI:10.1210/jc.2015-1215.
  • Kim SG, Kim DM, Woo JT, et al. Efficacy and safety of lobeglitazone monotherapy in patients with type 2 diabetes mellitus over 24-weeks: a multicenter, randomized, double-blind, parallel-group, placebo controlled trial. PLoS One. 2014;9(4):e92843. DOI:10.1371/journal.pone.0092843.
  • Lim S, Kim KM, Kim SG, et al. Effects of Lobeglitazone, a Novel Thiazolidinedione, on Bone Mineral Density in Patients with Type 2 Diabetes Mellitus over 52 Weeks. Diabetes Metab J. 2017 Oct;41(5):377–385. DOI:10.4093/dmj.2017.41.5.377.
  • Bergstrom WH, Wallace WM. Bone as a sodium and potassium reservoir. J Clin Invest. 1954 Jun;33(6):867–873.
  • Barsony J, Sugimura Y, Verbalis JG. Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J Biol Chem. 2011 Mar 25;286(12):10864–10875.
  • Hannon MJ, Verbalis JG. Sodium homeostasis and bone. Curr Opin Nephrol Hypertens. 2014 Jul;23(4):370–376.
  • Tamma R, Sun L, Cuscito C, et al. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18644–18649.
  • Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol. 2015 Jan;3(1):8–10.
  • Blau JE, Bauman V, Conway EM, et al. Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight. 2018 Apr 19;3:8.
  • Millar PJ, Pathak V, Moffett RC, et al. Beneficial metabolic actions of a stable GIP agonist following pre-treatment with a SGLT2 inhibitor in high fat fed diabetic mice. Mol Cell Endocrinol. 2016 Jan 15;420:37–45. DOI:10.1016/j.mce.2015.11.019.
  • Suzuki M, Takeda M, Kito A, et al. Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models. Nutr Diabetes. 2014 Jul 7;4:e125. DOI:10.1038/nutd.2014.20.
  • Takasu T, Hayashizaki Y, Hirosumi J, et al. The Sodium Glucose Cotransporter 2 Inhibitor Ipragliflozin Promotes Preferential Loss of Fat Mass in Non-obese Diabetic Goto-Kakizaki Rats. Biol Pharm Bull. 2017;40(5):675–680. DOI:10.1248/bpb.b16-00964.
  • Thrailkill KM, Clay Bunn R, Nyman JS, et al. SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice. Bone. 2016 Jan;82:101–107.
  • Yokono M, Takasu T, Hayashizaki Y, et al. SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur J Pharmacol. 2014 Mar 15;727:66–74. DOI:10.1016/j.ejphar.2014.01.040.
  • Yurista SR, Sillje HHW, van Goor H, et al. Effects of Sodium-Glucose Co-transporter 2 Inhibition with Empaglifozin on Renal Structure and Function in Non-diabetic Rats with Left Ventricular Dysfunction After Myocardial Infarction. Cardiovasc Drugs Ther. 2020 Jun;34(3):311–321. DOI:10.1007/s10557-020-06954-6.
  • Wang JY, Cheng YZ, Yang SL, et al. Dapagliflozin Attenuates Hyperglycemia Related Osteoporosis in ZDF Rats by Alleviating Hypercalciuria. Front Endocrinol (Lausanne). 2019;10:700.
  • Thrailkill KM, Bunn RC, Uppuganti S, et al. Genetic ablation of SGLT2 function in mice impairs tissue mineral density but does not affect fracture resistance of bone. Bone. 2020;133:115254.
  • Tirmenstein M, Dorr TE, Janovitz EB, et al. Nonclinical toxicology assessments support the chronic safety of dapagliflozin, a first-in-class sodium-glucose cotransporter 2 inhibitor. Int J Toxicol. 2013 Sep-Oct;32(5):336–350. DOI:10.1177/1091581813505331.
  • Mieczkowska A, Millar P, Chappard D, et al. Dapagliflozin and Liraglutide Therapies Rapidly Enhanced Bone Material Properties and Matrix Biomechanics at Bone Formation Site in a Type 2 Diabetic Mouse Model. Calcif Tissue Int. 2020 Sep;107(3):281-293.
  • List JF, Woo V, Morales E, et al. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes care. 2009 Apr;32(4):650–657. DOI:10.2337/dc08-1863.
  • Nauck MA, Del Prato S, Meier JJ, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes care. 2011 Sep;34(9):2015–2022. DOI:10.2337/dc11-0606.
  • Ljunggren O, Bolinder J, Johansson L, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab. 2012 Nov;14(11):990–999. DOI:10.1111/j.1463-1326.2012.01630.x.
  • Bilezikian JP, Watts NB, Usiskin K, et al. Evaluation of Bone Mineral Density and Bone Biomarkers in Patients With Type 2 Diabetes Treated With Canagliflozin. J Clin Endocrinol Metab. 2016 Jan;101(1):44–51. DOI:10.1210/jc.2015-1860.
  • Kaneko M, Narukawa M. Effects of Sodium-glucose Cotransporter 2 Inhibitors on Amputation, Bone Fracture, and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus Using an Alternative Measure to the Hazard Ratio. Clin Drug Investig. 2019 Feb;39(2):179–186.
  • Watts NB, Bilezikian JP, Usiskin K, et al. Effects of Canagliflozin on Fracture Risk in Patients With Type 2 Diabetes Mellitus. J Clin Endocrinol Metab. 2016 Jan;101(1):157–166. DOI:10.1210/jc.2015-3167.
  • Kohan DE, Fioretto P, Tang W, et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014 Apr;85(4):962–971. DOI:10.1038/ki.2013.356.
  • Bolinder J, Ljunggren O, Johansson L, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2014 Feb;16(2):159–169. DOI:10.1111/dom.12189.
  • Fioretto P, Del Prato S, Buse JB, et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study. Diabetes Obes Metab. 2018 Nov;20(11):2532–2540.
  • Zhou Z, Jardine M, Perkovic V, et al. Canagliflozin and fracture risk in individuals with type 2 diabetes: results from the CANVAS Program. Diabetologia. 2019 Oct;62(10):1854–1867. DOI:10.1007/s00125-019-4955-5.
  • Cheng L, Li YY, Hu W, et al. Risk of bone fracture associated with sodium-glucose cotransporter-2 inhibitor treatment: A meta-analysis of randomized controlled trials. Diabetes Metab. 2019 Oct;45(5):436–445.
  • Gallo S, Charbonnel B, Goldman A, et al. Long-term efficacy and safety of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin monotherapy: 104-week VERTIS MET trial. Diabetes Obes Metab. 2019 Apr;21(4):1027–1036. DOI:10.1111/dom.13631.
  • Inoue H, Morino K, Ugi S, et al. Ipragliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces bodyweight and fat mass, but not muscle mass, in Japanese type 2 diabetes patients treated with insulin: A randomized clinical trial. J Diabetes Investig. 2019 Jul;10(4):1012–1021.
  • Kohler S, Kaspers S, Salsali A, et al. Analysis of Fractures in Patients With Type 2 Diabetes Treated With Empagliflozin in Pooled Data From Placebo-Controlled Trials and a Head-to-Head Study Versus Glimepiride. Diabetes care. 2018 Aug;41(8):1809–1816. DOI:10.2337/dc17-1525.
  • Kohler S, Salsali A, Hantel S, et al. Safety and Tolerability of Empagliflozin in Patients with Type 2 Diabetes. Clin Ther. 2016 Jun;38(6):1299–1313. DOI:10.1016/j.clinthera.2016.03.031.
  • Kohler S, Zeller C, Iliev H, et al. Safety and Tolerability of Empagliflozin in Patients with Type 2 Diabetes: Pooled Analysis of Phase I-III Clinical Trials. Adv Ther. 2017 Jul;34(7):1707–1726. DOI:10.1007/s12325-017-0573-0.
  • Li X, Li T, Cheng Y, et al. Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: An updated meta-analysis. Diabetes Metab Res Rev. 2019 Oct;35(7):e3170. DOI:10.1002/dmrr.3170.
  • Monteiro P, Bergenstal RM, Toural E, et al. Efficacy and safety of empagliflozin in older patients in the EMPA-REG OUTCOME(R) trial. Age Ageing. 2019 Nov 1;48(6):859–866.
  • Patel S, Hickman A, Frederich R, et al.. Safety of Ertugliflozin in Patients with Type 2 Diabetes Mellitus: Pooled Analysis of Seven Phase 3 Randomized Controlled Trials. Diabetes Ther. 2020 Jun;11(6):1347–1367. DOI:10.1007/s13300-020-00803-3.
  • Rosenstock J, Frias J, Pall D, et al. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab. 2018 Mar;20(3):520–529. DOI:10.1111/dom.13103.
  • Sasaki T, Sugawara M, Fukuda M. Sodium-glucose cotransporter 2 inhibitor-induced changes in body composition and simultaneous changes in metabolic profile: 52-week prospective LIGHT (Luseogliflozin: the Components of Weight Loss in Japanese Patients with Type 2 Diabetes Mellitus) Study. J Diabetes Investig. 2019 Jan;10(1):108–117.
  • Tang HL, Li DD, Zhang JJ, et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2016 Dec;18(12):1199–1206. DOI:10.1111/dom.12742.
  • Toulis KA, Bilezikian JP, Thomas GN, et al. Initiation of dapagliflozin and treatment-emergent fractures. Diabetes Obes Metab. 2018 Apr;20(4):1070–1074. DOI:10.1111/dom.13176.
  • Ueda P, Svanstrom H, Melbye M, et al. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study. BMJ. 2018 Nov;14(363):k4365. DOI:10.1136/bmj.k4365.
  • Adimadhyam S, Lee TA, Calip GS, et al. Sodium-glucose co-transporter 2 inhibitors and the risk of fractures: A propensity score-matched cohort study. Pharmacoepidemiol Drug Saf. 2019 Dec;28(12):1629–1639. DOI:10.1002/pds.4900.
  • Fralick M, Kim SC, Schneeweiss S, et al. Fracture Risk After Initiation of Use of Canagliflozin: A Cohort Study. Ann Intern Med. 2019 Feb 5;170(3):155–163.
  • Koshizaka M, Ishikawa K, Ryoichi I, et al. Effects of ipragliflozin versus metformin in combination with sitagliptin on bone and muscle in Japanese patients with type 2 diabetes mellitus: Sub-analysis of a prospective, randomized, controlled study (PRIME-V study). J Diabetes Investig. 2020 Jul 4 In press. DOI: 10.1111/jdi.13340.
  • Schmedt N, Andersohn F, Walker J, et al. Sodium-glucose co-transporter-2 inhibitors and the risk of fractures of the upper or lower limbs in patients with type 2 diabetes: A nested case-control study. Diabetes Obes Metab. 2019 Jan;21(1):52–60. DOI:10.1111/dom.13480. .
  • Bower RL, Hay DL. Amylin structure-function relationships and receptor pharmacology: implications for amylin mimetic drug development. Br J Pharmacol. 2016 Jun;173(12):1883–1898.
  • Gingell JJ, Burns ER, Hay DL. Activity of pramlintide, rat and human amylin but not Abeta1-42 at human amylin receptors. Endocrinology. 2014 Jan;155(1):21–26.
  • Borm AK, Klevesath MS, Borcea V, et al. The effect of pramlintide (amylin analogue) treatment on bone metabolism and bone density in patients with type 1 diabetes mellitus. Horm Metab Res. 1999 Aug;31(8):472–475. DOI:10.1055/s-2007-978777.
  • Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab. 2004 Aug;287(2):E199–206.
  • Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007 May;132(6):2131–2157.
  • Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, et al. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011 Jul;29(11):12. DOI:10.1186/1472-6793-11-12.
  • Nuche-Berenguer B, Portal-Nunez S, Moreno P, et al. Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J Cell Physiol. 2010 Nov;225(2):585–592. DOI:10.1002/jcp.22243.
  • Mabilleau G, Mieczkowska A, Irwin N, et al. Optimal bone mechanical and material properties require a functional GLP-1 receptor. J Endocrinol. 2013 Aug 2;219(1):59–68. DOI:10.1530/JOE-13-0146. .
  • Gao L, Li SL, Li YK. Liraglutide Promotes the Osteogenic Differentiation in MC3T3-E1 Cells via Regulating the Expression of Smad2/3 Through PI3K/Akt and Wnt/beta-Catenin Pathways. DNA Cell Biol. 2018 Dec;37(12):1031–1043.
  • Pereira M, Jeyabalan J, Jorgensen CS, et al. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice. Bone. 2015 Dec;81:459–467.
  • Yamada C, Yamada Y, Tsukiyama K, et al. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology. 2008 Feb;149(2):574–579. DOI:10.1210/en.2007-1292.
  • Madsen LW, Knauf JA, Gotfredsen C, et al. GLP-1 receptor agonists and the thyroid: C-cell effects in mice are mediated via the GLP-1 receptor and not associated with RET activation. Endocrinology. 2012 Mar;153(3):1538–1547. DOI:10.1210/en.2011-1864.
  • Henriksen DB, Alexandersen P, Bjarnason NH, et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res. 2003 Dec;18(12):2180–2189.
  • Shen WR, Kimura K, Ishida M, et al. The Glucagon-Like Peptide-1 Receptor Agonist Exendin-4 Inhibits Lipopolysaccharide-Induced Osteoclast Formation and Bone Resorption via Inhibition of TNF-alpha Expression in Macrophages. J Immunol Res. 2018;2018:5783639.
  • Nuche-Berenguer B, Moreno P, Esbrit P, et al. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int. 2009 Jun;84(6):453–461. DOI:10.1007/s00223-009-9220-3.
  • Nuche-Berenguer B, Moreno P, Portal-Nunez S, et al. Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regul Pept. 2010 Jan 8;159(1–3):61–66.
  • Ma X, Meng J, Jia M, et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats. J Bone Miner Res. 2013 Jul;28(7):1641–1652. DOI:10.1002/jbmr.1898.
  • Kim JY, Lee SK, Jo KJ, et al. Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci. 2013 Mar 21;92(10):533–540.
  • Mansur SA, Mieczkowska A, Flatt PR, et al. The GLP-1 Receptor Agonist Exenatide Ameliorates Bone Composition and Tissue Material Properties in High Fat Fed Diabetic Mice. Front Endocrinol (Lausanne). 2019;10:51.
  • Li J, Fu LZ, Liu L, et al. Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist Liraglutide Alters Bone Marrow Exosome-Mediated miRNA Signal Pathways in Ovariectomized Rats with Type 2 Diabetes. Med Sci Monit. 2017 Nov 14;23:5410–5419. DOI:10.12659/MSM.906603.
  • Mabilleau G, Mieczkowska A, Chappard D. Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials. J Diabetes. 2014 May;6(3):260–266.
  • Driessen JH, Henry RM, van Onzenoort HA, et al. Bone Fracture Risk is Not Associated with the Use of Glucagon-Like Peptide-1 Receptor Agonists: A Population-Based Cohort Analysis. Calcif Tissue Int. 2015 Apr 17;97(2):104–112.
  • Li R, Xu W, Luo S, et al. Effect of exenatide, insulin and pioglitazone on bone metabolism in patients with newly diagnosed type 2 diabetes. Acta Diabetol. 2015 Dec;52(6):1083–1091. DOI:10.1007/s00592-015-0792-2.
  • Su B, Sheng H, Zhang M, et al. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials. Endocrine. 2015 Feb;48(1):107–115. DOI:10.1007/s12020-014-0361-4.
  • Cheng L, Hu Y, Li YY, et al. Glucagon-like peptide-1 receptor agonists and risk of bone fracture in patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetes Metab Res Rev. 2019 Oct;35(7):e3168. DOI:10.1002/dmrr.3168.
  • Zhang YS, Weng WY, Xie BC, et al. Glucagon-like peptide-1 receptor agonists and fracture risk: a network meta-analysis of randomized clinical trials. Osteoporos Int. 2018 Dec;29(12):2639–2644. DOI:10.1007/s00198-018-4649-8.
  • Fulzele K, Clemens TL. Novel functions for insulin in bone. Bone. 2012 Feb;50(2):452–456.
  • Pun KK, Lau P, Ho PW. The characterization, regulation, and function of insulin receptors on osteoblast-like clonal osteosarcoma cell line. J Bone Miner Res. 1989 Dec;4(6):853–862.
  • Kream BE, Smith MD, Canalis E, et al. Characterization of the effect of insulin on collagen synthesis in fetal rat bone. Endocrinology. 1985 Jan;116(1):296–302. DOI:10.1210/endo-116-1-296.
  • Hahn TJ, Westbrook SL, Sullivan TL, et al. Glucose transport in osteoblast-enriched bone explants: characterization and insulin regulation. J Bone Miner Res. 1988 Jun;3(3):359–365. DOI:10.1002/jbmr.5650030317.
  • Ituarte EA, Halstead LR, Iida-Klein A, et al. Glucose transport system in UMR-106-01 osteoblastic osteosarcoma cells: regulation by insulin. Calcif Tissue Int. 1989 Jul;45(1):27–33. DOI:10.1007/BF02556657.
  • Li Z, Frey JL, Wong GW, et al. Glucose Transporter-4 Facilitates Insulin-Stimulated Glucose Uptake in Osteoblasts. Endocrinology. 2016 Nov;157(11):4094–4103. DOI:10.1210/en.2016-1583.
  • Thomas DM, Udagawa N, Hards DK, et al.. Insulin receptor expression in primary and cultured osteoclast-like cells. Bone. 1998 Sep;23(3):181–186. DOI:10.1016/S8756-3282(98)00095-7.
  • Mansur SA, Mieczkowska A, Bouvard B, et al. Stable Incretin Mimetics Counter Rapid Deterioration of Bone Quality in Type 1 Diabetes Mellitus. J Cell Physiol. 2015 Dec;230(12):3009–3018. DOI:10.1002/jcp.25033.
  • Schwartz AV, Sellmeyer DE, Ensrud KE, et al. Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001 Jan;86(1):32–38. DOI:10.1210/jcem.86.1.7139.
  • Ivers RQ, Cumming RG, Mitchell P, et al. Diabetes and risk of fracture: The Blue Mountains Eye Study. Diabetes care. 2001 Jul;24(7):1198–1203. DOI:10.2337/diacare.24.7.1198.
  • Jovanovic L. Sex differences in insulin dose and postprandial glucose as BMI increases in patients with type 2 diabetes. Diabetes care. 2009 Dec;32(12):e148.
  • Franconi F, Campesi I. Sex and gender influences on pharmacological response: an overview. Expert Rev Clin Pharmacol. 2014 Jul;7(4):469–485.
  • Haentjens P, Magaziner J, Colon-Emeric CS, et al. Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med. 2010 Mar 16;152(6):380–390.
  • Hu F, Jiang C, Shen J, et al. Preoperative predictors for mortality following hip fracture surgery: a systematic review and meta-analysis. Injury. 2012 Jun;43(6):676–685. DOI:10.1016/j.injury.2011.05.017.
  • Tosteson AN, Melton LJ 3rd, Dawson-Hughes B, et al. Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int. 2008 Apr;19(4):437–447. DOI:10.1007/s00198-007-0550-6.
  • Sellmeyer DE, Civitelli R, Hofbauer LC, et al. Skeletal Metabolism, Fracture Risk, and Fracture Outcomes in Type 1 and Type 2 Diabetes. Diabetes. 2016 Jul;65(7):1757–1766. DOI:10.2337/db16-0063.
  • Eller-Vainicher C, Cairoli E, Grassi G, et al. Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility. J Diabetes Res. 2020;2020:7608964.
  • Ho-Pham LT, Nguyen TV. Association between trabecular bone score and type 2 diabetes: a quantitative update of evidence. Osteoporos Int. 2019 Oct;30(10):2079–2085. DOI: 10.1007/s00198-019-05053-z.
  • Leslie WD, Aubry-Rozier B, Lamy O, et al. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013 Feb;98(2):602–609. DOI:10.1210/jc.2012-3118.
  • Gault VA, Bhat VK, Irwin N, et al. A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice. J Biol Chem. 2013 Dec 6;288(49):35581–35591.
  • Irwin N, Pathak V, Flatt PR. A novel CCK-8/GLP-1 hybrid peptide exhibiting prominent insulinotropic, glucose-lowering and satiety actions with significant therapeutic potential in high-fat fed mice. Diabetes. 2015 Apr 16;64(8):2996–3009.
  • Meier JJ, Nauck MA. Incretin-based therapies: where will we be 50 years from now?. Diabetologia. 2015 May;21(58):1745–1750.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.