272
Views
0
CrossRef citations to date
0
Altmetric
Review

Predictive molecular pathology in metastatic thyroid cancer: the role of RET fusions

, ORCID Icon, , ORCID Icon, , , , , , , , & show all
Pages 167-178 | Received 25 Jan 2022, Accepted 29 Mar 2022, Published online: 11 Apr 2022

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.
  • Miranda-Filho A, Lortet-Tieulent J, Bray F, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet Diabetes Endocrinol. 2021;9(4):225–234.
  • Rossi ED, Pantanowitz L, Hornick JL. A worldwide journey of thyroid cancer incidence centred on tumour histology. Lancet Diabetes Endocrinol. 2021;9(4):193–194.
  • Kitahara CM, Sosa JA. The changing incidence of thyroid cancer. Nat Rev Endocrinol. 2016 Nov 15;12(11):646–653.
  • Fagin JA, Wells SA. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016 Sep 15;375(11):1054–1067.
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Investig. 2016 Feb 15 126(3):1052–1066.
  • Lim H, Devesa SS, Sosa JA, et al. Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA. 2017;317(13):1338–1348.
  • Salvatore D, Santoro M, Schlumberger M. The importance of the RET gene in thyroid cancer and therapeutic implications. Nat Rev Endocrinol. 2021;17(5):296–306.
  • Agrawal N, Akbani R, Aksoy B; Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014 Oct 23;159(3):676–690.
  • Santoro M, Moccia M, Federico G, et al. RET gene fusions in malignancies of the thyroid and other tissues. Genes (Basel). 2020 Jul 27;11(4):424.
  • de Vries MM, Celestino R, Castro P, et al. RET/PTC rearrangement is prevalent in follicular Hürthle cell carcinomas. Histopathology. 2012 Nov;61(5):833–843.
  • Caudill CM, Zhu Z, Ciampi R, et al. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J Clin Endocrinol Metab. 2005Apr;90(4):2364–2369.
  • Alzahrani AS, Alswailem M, Alswailem AA, et al. Genetic alterations in pediatric thyroid cancer using a comprehensive childhood cancer gene panel. J Clin Endocrinol Metab. 2020;105(10).
  • Pekova B, Sykorova V, Dvorakova S, et al. RET, NTRK, ALK, BRAF, and MET fusions in a large cohort of pediatric papillary thyroid carcinomas. Thyroid: official journal of the American Thyroid Association. 2020;30(12): 1771–1780
  • Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. [2016 Mar 1];126(3):1052–1066.
  • FDA Approves Selpercatinib; Pralsetinib May Soon Follow. Cancer discovery. 2020. 10(7):OF1
  • Markham A. Selpercatinib: first Approval. Drugs. 2020 Jul;80(11):1119–1124.
  • Bradford D, Larkins E, Mushti SL, et al. FDA approval summary: selpercatinib for the treatment of lung and thyroid cancers with RET gene mutations or fusions. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2021;27(8): 2130–2135
  • Kim J, Bradford D, Larkins E, et al. FDA approval summary: pralsetinib for the treatment of lung and thyroid cancers with RET gene mutations or fusions. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2021;27(20): 5452–5456
  • Ishizaka Y, Itoh F, Tahira T, et al. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene. 1989 Dec;4(12):1519–1521.
  • Takahashi M, Buma Y, Hiai H. Isolation of ret proto-oncogene cDNA with an amino-terminal signal sequence. Oncogene. 1989 Jun;4(6):805–806.
  • Subbiah V, Yang D, Velcheti V, et al. State-of-the-Art strategies for targeting RET-dependent cancers. J Clin Oncol: official journal of the American Society of Clinical Oncology. 2020;38(11):1209–1221.
  • Li AY, McCusker MG, Russo A, et al. RET fusions in solid tumors. Cancer Treat Rev. 2019;81:101911.
  • Anders J, Kjar S, Ibáñez CF. Molecular modeling of the extracellular domain of the RET receptor tyrosine kinase reveals multiple cadherin-like domains and a calcium-binding site. J Biol Chem. 2001 Sep 21;276(38):35808–35817.
  • Goodman KM, Kjær S, Beuron F, et al. RET recognition of GDNF-GFRα1 ligand by a composite binding site promotes membrane-proximal self-association. Cell Rep. [2014 Sep 25];8(6):1894–1904.
  • Knowles PP, Murray-Rust J, Kjaer S, et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem. [2006 Nov 3];281(44):33577–33587.
  • Mulligan LM. 65 YEARS OF THE DOUBLE HELIX: exploiting insights on the RET receptor for personalized cancer medicine. Endocr Relat Cancer. 2018;25(8):T189–200.
  • Plaza-Menacho I. Structure and function of RET in multiple endocrine neoplasia type 2. Endocr Relat Cancer. 2018 Feb;25(2):T79–90.
  • Ibáñez CF. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb Perspect Biol. 2013 Feb 1. 5(2)
  • Rossel M, Pasini A, Chappuis S, et al. Distinct biological properties of two RET isoforms activated by MEN 2A and MEN 2B mutations. Oncogene. [1997 Jan 23];14(3):265–275.
  • Lian EY, Maritan SM, Cockburn JG, et al. Differential roles of RET isoforms in medullary and papillary thyroid carcinomas. Endocr Relat Cancer. 2017;24(1):53–69.
  • Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 2005 Aug-Oct;16(4–5):441–467.
  • Worby CA, Vega QC, Chao HH, et al. Identification and characterization of GFRalpha-3, a novel Co-receptor belonging to the glial cell line-derived neurotrophic receptor family. J Biol Chem. 1998 Feb 6;273(6):3502–3508.
  • Breit SN, Tsai V-W-W, Brown DA. Targeting obesity and cachexia: identification of the GFRAL Receptor-MIC-1/GDF15 Pathway. Trends Mol Med. 2017;23(12):1065–1067.
  • Tsai VWW, Husaini Y, Sainsbury A, et al. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab. 2018;28(3):353–368.
  • Yang L, Chang -C-C, Sun Z, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017 Oct;23(10):1158–1166.
  • Plaza-Menacho I, Barnouin K, Goodman K, et al. Oncogenic RET kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans. Mol Cell. [2014 Mar 6];53(5):738–751.
  • Besset V, Scott RP, Ibáñez CF. Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J Biol Chem. 2000 Dec 15;275(50):39159–39166.
  • Liu X, Vega QC, Decker RA, et al. Oncogenic RET receptors display different autophosphorylation sites and substrate binding specificities. J Biol Chem. 1996 Mar 8;271(10):5309–5312.
  • Hayashi H, Ichihara M, Iwashita T, et al. Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene. [2000 Sep 14];19(39):4469–4475.
  • Borrello MG, Alberti L, Arighi E, et al. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma. Mol Cell Biol. 1996 May;16(5):2151–2163.
  • Schuringa JJ, Wojtachnio K, Hagens W, et al. MEN2A-RET-induced cellular transformation by activation of STAT3. Oncogene. [2001 Aug 30];20(38):5350–5358.
  • Perrinjaquet M, Vilar M, Ibáñez CF. Protein-tyrosine phosphatase SHP2 contributes to GDNF neurotrophic activity through direct binding to phospho-Tyr687 in the RET receptor tyrosine kinase. J Biol Chem. 2010 Oct 8;285(41):31867–31875.
  • Encinas M, Crowder RJ, Milbrandt J, et al. Tyrosine 981, a novel ret autophosphorylation site, binds c-Src to mediate neuronal survival. J Biol Chem. 2004 Apr 30;279(18):18262–18269.
  • Plaza-Menacho I, Barnouin K, Barry R, et al. RET functions as a dual-specificity kinase that requires allosteric inputs from juxtamembrane elements. Cell Rep. 2016;17(12):3319–3332.
  • Meng X, Lindahl M, Hyvönen ME, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science (New York, NY). [2000 Feb 25];287(5457):1489–1493.
  • Lindfors PH, Lindahl M, Rossi J, et al. Ablation of persephin receptor glial cell line-derived neurotrophic factor family receptor alpha4 impairs thyroid calcitonin production in young mice. Endocrinology. 2006 May;147(5):2237–2244.
  • Cañibano C, Rodriguez NL, Saez C, et al. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. EMBO J. [2007 Apr 18];26(8):2015–2028.
  • Ohgami N, Ida-Eto M, Shimotake T, et al. c-Ret-mediated hearing loss in mice with Hirschsprung disease. Proc Natl Acad Sci U S A. 2010 Jul 20;107( 29):13051–13056.
  • Fonseca-Pereira D, Arroz-Madeira S, Rodrigues-Campos M, et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature. [2014 Oct 2];514(7520):98–101.
  • Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, RET, by DNA rearrangement. Cell. 1985 Sep;42(2):581–588.
  • Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. [1990 Feb 23];60(4):557–563.
  • Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harbor perspectives in biology.2013 Dec 1.5(12):a009233.
  • Mizukami T, Shiraishi K, Shimada Y, et al. Molecular mechanisms underlying oncogenic RET fusion in lung adenocarcinoma. J Thor Oncol: official publication of the International Association for the Study of Lung Cancer. 2014May; 95: 622–630
  • Rhoden KJ, Unger K, Salvatore G, et al. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab. 2006 Jun;91(6):2414–2423.
  • Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 2002;13(1):3–16.
  • Fenton CL, Lukes Y, Nicholson D, et al. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab. 2000 Mar;85(3):1170–1175.
  • Elisei R, Romei C, Vorontsova T, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab. 2001 Jul;86(7):3211–3216.
  • Cheung CC, Carydis B, Ezzat S, et al. Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab. 2001 May;86(5):2187–2190.
  • Romei C, Elisei R. RET/PTC translocations and clinico-pathological features in human papillary thyroid carcinoma. Front Endocrinol (Lausanne). 2012;3:54.
  • Romei C, Fugazzola L, Puxeddu E, et al. Modifications in the papillary thyroid cancer gene profile over the last 15 years. J Clin Endocrinol Metab. 2012 Sep;97(9):E1758–65.
  • Romei C, Ciampi R, Elisei R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol. 2016 Apr;12(4):192–202.
  • Drilon A, Hu ZI, Lai GGY, et al. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol. 2018;15(3):150.
  • Kohno T, Ichikawa H, Totoki Y, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. [2012 Feb 12];18(3):375–377.
  • Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. [2012 Feb 12];18(3):378–381.
  • Hamatani K, Eguchi H, Koyama K, et al. A novel RET rearrangement (ACBD5/RET) by pericentric inversion, inv(10)(p12.1;q11.2), in papillary thyroid cancer from an atomic bomb survivor exposed to high-dose radiation. Oncol Rep. 2014 Nov;32(5):1809–1814.
  • Velcheti V, Thawani R, Khunger M, et al. FRMD4A/RET: a novel RET oncogenic fusion variant in non-small cell lung carcinoma. J Thor Oncol : official publication of the International Association for the Study of Lung Cancer. 2017;12(2): e15–6
  • Stransky N, Cerami E, Schalm S, et al. The landscape of kinase fusions in cancer. Nat Commun. 2014 Sep 10;5:4846.
  • Drilon A, Wang L, Hasanovic A, et al. Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 2013 Jun;3(6):630–635.
  • Gautschi O, Milia J, Filleron T, et al. Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET Registry. J Clin Oncol: official journal of the American Society of Clinical Oncology. 2017 May 1;35(13):1403–1410.
  • Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011;11(11):792–804.
  • Lira ME, Choi Y-L, Lim SM, et al. A single-tube multiplexed assay for detecting ALK, ROS1, and RET fusions in lung cancer. J Mole Diagnost JMD. 2014Mar; 162: 229–243
  • Ciampi R, Giordano TJ, Wikenheiser-Brokamp K, et al. HOOK3-RET: a novel type of RET/PTC rearrangement in papillary thyroid carcinoma. Endocr Relat Cancer. 2007 Jun;14(2):445–452.
  • Wiesner T, He J, Yelensky R, et al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat Commun. 2014;5:3116.
  • Grubbs EG, Pk-s N, Bui J, et al. RET fusion as a novel driver of medullary thyroid carcinoma. J Clin Endocrinol Metab. 2015 Mar;100(3):788–793.
  • Li GG, Somwar R, Joseph J, et al. Antitumor activity of RXDX-105 in multiple cancer types with RET rearrangements or mutations. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2017 Jun 15;23(12):2981–2990.
  • Klugbauer S, Demidchik EP, Lengfelder E, et al. Molecular analysis of new subtypes of ELE/RET rearrangements, their reciprocal transcripts and breakpoints in papillary thyroid carcinomas of children after Chernobyl. Oncogene. 1998 Feb 5;16(5):671–675.
  • Nakaoku T, Tsuta K, Ichikawa H, et al. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2014 Jun 15;20(12):3087–3093.
  • Kato S, Subbiah V, Marchlik E, et al. RET aberrations in diverse cancers: next-generation sequencing of 4,871 patients. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2017;23(8):1988–1997.
  • Seki Y, Mizukami T, Kohno T. Molecular process producing oncogene fusion in lung cancer cells by illegitimate repair of DNA double-strand breaks. Biomolecules. 2015 Sep 30;5(4):2464–2476.
  • Ricarte-Filho JC, Li S, Garcia-Rendueles MER, et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest. 2013 Nov;123(11):4935–4944.
  • Rabes HM, Demidchik EP, Sidorow JD, et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res: an official journal of the American Association for Cancer Research. 2000Mar; 63: 1093–1103
  • Hamatani K, Eguchi H, Ito R, et al. RET/PTC rearrangements preferentially occurred in papillary thyroid cancer among atomic bomb survivors exposed to high radiation dose. Cancer Res. [2008 Sep 1];68(17):7176–7182.
  • Bounacer A, Wicker R, Caillou B, et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene. 1997 Sep;15(11):1263–1273.
  • Leeman-Neill RJ, V BA, Little MP, et al. RET/PTC and PAX8/PPARγ chromosomal rearrangements in post-Chernobyl thyroid cancer and their association with iodine-131 radiation dose and other characteristics. Cancer. [2013 May 15];119(10):1792–1799.
  • Nikiforov YE, Rowland JM, Bove KE, et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997 May 1;57(9):1690–1694.
  • Ameziane-El-Hassani R, Boufraqech M, Lagente-Chevallier O, et al. Role of H2O2 in RET/PTC1 chromosomal rearrangement produced by ionizing radiation in human thyroid cells. Cancer Res. [2010 May 15];70(10):4123–4132.
  • Bossi D, Carlomagno F, Pallavicini I, et al. Functional characterization of a novel FGFR1OP-RET rearrangement in hematopoietic malignancies. Mol Oncol. 2014 Mar;8(2):221–231.
  • H-q X, X-s W, Wei B, et al. Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med. 2012 Dec;16(12):2894–2909.
  • Subbiah V, Cote GJ. Advances in targeting RET-Dependent cancers. Cancer Discov. 2020;10(4):498–505.
  • Soares P, Trovisco V, Rocha AS, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. [2003 Jul 17];22(29):4578–4580.
  • Zou M, Baitei EY, Alzahrani AS, et al. Concomitant RAS, RET/PTC, or BRAF mutations in advanced stage of papillary thyroid carcinoma. Thyroid: official journal of the American Thyroid Association. 2014Aug; 248: 1256–1266
  • Guerra A, Zeppa P, Bifulco M, et al. Concomitant BRAF(V600E) mutation and RET/PTC rearrangement is a frequent occurrence in papillary thyroid carcinoma. Thyroid: official journal of the American Thyroid Association. 2014Feb;24(2):254–259.
  • Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014 Oct 23;159(3):676–690.
  • Kazakov VS, Demidchik EP, Astakhova LN. Thyroid cancer after Chernobyl. Nature. 1992 Sep 3;359(6390):21.
  • Alzahrani AS, Alswailem M, Alswailem AA, et al. Genetic alterations in pediatric thyroid cancer using a comprehensive childhood cancer gene panel. J Clin Endocrinol Metab. 2020 Oct 1 105(10):3324–3334.
  • Thomas GA, Bunnell H, Cook HA, et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab. 1999 Nov;84(11):4232–4238.
  • Furmanchuk AW, Averkin JI, Egloff B, et al. Pathomorphological findings in thyroid cancers of children from the Republic of Belarus: a study of 86 cases occurring between 1986 (‘post-Chernobyl’) and 1991. Histopathology. 1992 Nov;21(5):401–408.
  • Ito M, Yamashita S, Ashizawa K, et al. Histopathological characteristics of childhood thyroid cancer in Gomel, Belarus. Int J Cancer. 1996 Jan 3 65(1):29–33.
  • Thomas GA, Bunnell H, Cook HA, et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab. 1999 Nov;84(11):4232–4238.
  • Mochizuki K, Kondo T, Nakazawa T, et al. RET rearrangements and BRAF mutation in undifferentiated thyroid carcinomas having papillary carcinoma components. Histopathology. 2010 Sep 14 57(3):444–450.
  • Guerra A, Di Crescenzo V, Garzi A, et al. Genetic mutations in the treatment of anaplastic thyroid cancer: a systematic review. BMC Surg. 2013; 13.Suppl 2:S44 https://doi.org/10.1186/1471-2482-13-S2-S44
  • Chrzanowska NM, Kowalewski J, Lewandowska MA. Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors. Molecules. 2020 Apr 17;258. https://doi.org/10.3390/molecules25081864
  • Summersgill B, Clark J, Shipley J. Fluorescence and chromogenic in situ hybridization to detect genetic aberrations in formalin-fixed paraffin embedded material, including tissue microarrays. Nat Protoc. 2008;3(2):220–234.
  • Corvi R, Martinez-Alfaro M, Harach HR, et al. Frequent RET rearrangements in thyroid papillary microcarcinoma detected by interphase fluorescence in situ hybridization. Lab Invest. 2001 Dec;81(12):1639–1645.
  • Liu Y, Wu S, Zhou L, et al. Pitfalls in RET fusion detection using break-apart fish probes in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2021;106(4):1129–1138.
  • Caria P, Dettori T, V FD, et al. Assessing RET/PTC in thyroid nodule fine-needle aspirates: the FISH point of view. Endocr Relat Cancer. 2013 Aug;20(4):527–536.
  • Caria P, V FD, Dettori T, et al. Optimizing detection of RET and PPARg rearrangements in thyroid neoplastic cells using a home-brew tetracolor probe. Cancer Cytopathol. 2014 May;122(5):377–385.
  • Ciampi R, Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology. 2007 Mar;148(3):936–941.
  • Colomba E, Hélias-Rodzewicz Z, von Deimling A, et al. Detection of BRAF p.V600E mutations in melanomas: comparison of four methods argues for sequential use of immunohistochemistry and pyrosequencing. J Mol diagn JMD. 2013 Jan;15(1):94–100.
  • Zhang T, Lu Y, Ye Q, et al. An evaluation and recommendation of the optimal methodologies to detect RET gene rearrangements in papillary thyroid carcinoma. Genes Chromosomes Cancer. 2015 Mar;54(3):168–176.
  • Nollau P, Wagener C. Methods for detection of point mutations: performance and quality assessment. IFCC Scientific Division, Committee on Molecular Biology Techniques. Clin Chem. 1997Jul;43(7):1114–1128.
  • Rhoden KJ, Johnson C, Brandao G, et al. Real-time quantitative RT-PCR identifies distinct c-RET, RET/PTC1 and RET/PTC3 expression patterns in papillary thyroid carcinoma. Lab Invest. 2004 Dec;84(12):1557–1570.
  • Musholt TJ, Staubitz JI, Antonio Cámara RJ, et al. Detection of RET rearrangements in papillary thyroid carcinoma using RT-PCR and FISH techniques - A molecular and clinical analysis. Eur J Surg Oncol: the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. 2019;45(6):1018–1024.
  • Nikiforov YE, Ohori NP, Hodak SP, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011 Nov;96(11):3390–3397.
  • Eszlinger M, Böhme K, Ullmann M, et al. Evaluation of a two-year routine application of molecular testing of thyroid fine-needle aspirations using a seven-gene panel in a primary referral setting in Germany. Thyroid: official journal of the American Thyroid Association. 2017;27(3):402–411.
  • Bellevicine C, Migliatico I, Sgariglia R, et al. Evaluation of BRAF, RAS, RET/PTC, and PAX8/PPARg alterations in different Bethesda diagnostic categories: a multicentric prospective study on the validity of the 7-gene panel test in 1172 thyroid FNAs deriving from different hospitals in South Italy. Cancer Cytopathol. 2020;128(2):107–118.
  • Vigliar E, Malapelle U, de Luca C, et al. Challenges and opportunities of next-generation sequencing: a cytopathologist’s perspective. Cytopathology: official journal of the British Society for Clinical Cytology. 2015 Oct;26(5): 271–283.
  • Bruno R, Fontanini G. Next generation sequencing for gene fusion analysis in lung cancer: a literature review. Diagnostics (Basel) 2020Jul 27;10(8):521.
  • Yang S-R, Aypar U, Rosen EY, et al. A performance comparison of commonly used assays to detect RET fusions. Clini Cancer Res: an official journal of the American Association for Cancer Research. 2021;27(5):1316–1328.
  • Pisapia P, Pepe F, Iaccarino A, et al. Next generation sequencing in cytopathology: focus on non-small cell lung cancer. Front Med (Lausanne). 2021;8:633923.
  • Cha YJ, Koo JS. Next-generation sequencing in thyroid cancer. J Transl Med. 2016;14(1):322.
  • Nikiforova MN, Mercurio S, Wald AI, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018 Apr 15 124(8):1682–1690.
  • Nikiforova MN, Lepe M, Tolino LA, et al. Thyroid cytology smear slides: an untapped resource for ThyroSeq testing. Cancer Cytopathol. 2021;129(1):33–42.
  • Angell TE, Wirth LJ, Cabanillas ME, et al. Analytical and clinical validation of expressed variants and fusions from the whole transcriptome of thyroid fna samples. Front Endocrinol (Lausanne). 2019;10:612.
  • Kaya C, Dorsaint P, Mercurio S, et al. Limitations of detecting genetic variants from the RNA sequencing data in tissue and fine-needle aspiration samples. Thyroid official journal of the American Thyroid Association. 2021;31(4): 589–595
  • de Falco V, Carlomagno F, Li H-Y, et al. The molecular basis for RET tyrosine-kinase inhibitors in thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2017;31(3):307–318.
  • Carlomagno F, Vitagliano D, Guida T, et al. Efficient inhibition of RET/papillary thyroid carcinoma oncogenic kinases by 4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). J Clin Endocrinol Metab. 2003 Apr;88(4):1897–1902.
  • Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. [2002 Dec 15];62(24):7284–7290.
  • Jeong W-J, J-h M, Park MW, et al. Sunitinib inhibits papillary thyroid carcinoma with RET/PTC rearrangement but not BRAF mutation. Cancer Biol Ther. [2011 Sep 1];12(5):458–465.
  • Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. [2014 Jul 26];384(9940):319–328.
  • Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. [2015 Feb 12];372(7):621–630.
  • Brose MS, Robinson B, Sherman SI, et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021;22(8):1126–1138.
  • Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 1990Jan; 452: 228–247 2009
  • Ringel MD. New horizons: emerging therapies and targets in thyroid cancer. J Clin Endocrinol Metab. 2021 Jan 1;106(1):e382–8.
  • Lim SM, Chung WY, Nam K-H, et al. An open label, multicenter, phase II study of dovitinib in advanced thyroid cancer . Eur J Cancer. 2015 Aug;51(12):1588–1595.
  • Ravaud A, de la Fouchardière C, Caron P, et al. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: mature data from the THYSU study. Eur J Cancer (Oxford. England  1990; 2017 Vol. 76 110–117
  • Leboulleux S, Bastholt L, Krause T, et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 2012 Sep;13(9):897–905.
  • Cabanillas ME, Ryder M, Jimenez C. Targeted therapy for advanced thyroid cancer: kinase inhibitors and beyond. Endocr Rev. 2019;40(6):1573–1604.
  • Porcelli T, Luongo C, Sessa F, et al. Long-term management of lenvatinib-treated thyroid cancer patients: a real-life experience at a single institution. Endocrine. 2021;73(2):358–366.
  • Subbiah V, Velcheti V, Tuch BB, et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann Oncol: official journal of the European Society for Medical Oncology. 2018;29(8): 1869–1876
  • Wirth LJ, Sherman E, Robinson B, et al. Efficacy of selpercatinib in RET-Altered thyroid cancers. N Engl J Med. 2020;383(9):825–835.
  • Subbiah V, Gainor JF, Rahal R, et al. Precision targeted therapy with BLU-667 for RET-driven Cancers. Cancer Discov. 2018;8(7):836–849.
  • Subbiah V, Hu MI, Wirth LJ, et al, Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. 2021 Aug;9(8):491–501. doi: https://doi.org/10.1016/S2213-8587(21)00120-0. Epub 2021 Jun 9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.