148
Views
1
CrossRef citations to date
0
Altmetric
Review

Renal insulin resistance in type 2 diabetes mellitus and progression of chronic kidney disease: potential pathogenic mechanisms

, & ORCID Icon
Pages 523-532 | Received 19 Jul 2022, Accepted 28 Sep 2022, Published online: 06 Oct 2022

References

  • Afshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.
  • Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24(2):302–308.
  • Saran R, Robinson B, Abbott KC, et al. US renal data system 2019 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Diseases. 2020;75(1):A6–A7.
  • Ahlqvist E, Storm P, Karajamaki A, et al., Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5): 361–369.
  • Dennis JM, Shields BM, Henley WE, et al. Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol. 2019;7(6):442–451.
  • Safai N, Ali A, Rossing P, et al. Stratification of type 2 diabetes based on routine clinical markers. Diabetes Res Clin Pract. 2018;141(275–283):275–283.
  • Tanabe H, Saito H, Kudo A, et al. Factors associated with risk of diabetic complications in novel cluster-based diabetes subgroups: a Japanese retrospective cohort study. J Clin Med. 2020;9(7):2083.
  • Zaharia OP, Strassburger K, Strom A, et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol. 2019;7(9):684–694.
  • Raverdy V, Cohen RV, Caiazzo R, et al. Data-driven subgroups of type 2 diabetes, metabolic response, and renal risk profile after bariatric surgery: a retrospective cohort study. Lancet Diabetes Endocrinol. 2022;10(3):167–176.
  • De Meyts P. Insulin and its receptor: structure, function and evolution. Bioessays. 2004;26(12):1351–1362.
  • Vakilian M, Tahamtani Y, Ghaedi K. A review on insulin trafficking and exocytosis. Gene. 2019;706(52–61):52–61.
  • Müller A, Mziaut H, Neukam M, et al. A 4D view on insulin secretory granule turnover in the β-cell. Diabetes Obes Metab. 2017;19(Suppl 1):107–114.
  • Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diabetes Obes Metab. 2018;20(Suppl 1):5–21.
  • Morriseau TS, Doucette CA, Dolinsky VW. More than meets the islet: aligning nutrient and paracrine inputs with hormone secretion in health and disease. Am J Physiol Endocrinol Metab. 2022;322(5):E446–e463.
  • Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia. 2009;52(5):739–751.
  • Belfiore A, Malaguarnera R, Vella V, et al. Insulin receptor isoforms in physiology and disease: an updated view. Endocr Rev. 2017;38(5):379–431. Ottensmeyer.
  • Beniac DR, Luo RZ, Yip CC. Mechanism of transmembrane signaling: insulin binding and the insulin receptor. Biochemistry. 2000;39(40):12103–12112.
  • Tatulian SA. Structural dynamics of insulin receptor and transmembrane signaling. Biochemistry. 2015;54(36):5523–5532.
  • Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–871.
  • Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–830.
  • Pina AF, Borges DO, Meneses MJ, et al. Insulin: trigger and target of renal functions. Front Cell Dev Biol. 2020;8(519). 10.3389/fcell.2020.00519.
  • Singh S, Sharma R, Kumari M, et al. Insulin receptors in the kidneys in health and disease. World J Nephrol. 2019;8(1):11–22.
  • Spoto B, Pisano A, Zoccali C. Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol Renal Physiol. 2016;311(6):F1087–f1108.
  • Parvanova AI, Trevisan R, Iliev IP, et al. Insulin resistance and microalbuminuria: a cross-sectional, case-control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes. 2006;55(5):1456–1462.
  • De Cosmo S, Trevisan R, Minenna A, et al. Insulin resistance and the cluster of abnormalities related to the metabolic syndrome are associated with reduced glomerular filtration rate in patients with type 2 diabetes. Diabetes Care. 2006;29(2):432–434.
  • Pham H, Robinson-Cohen C, Biggs ML, et al. Chronic kidney disease, insulin resistance, and incident diabetes in older adults. Clin J Am Soc Nephrol. 2012;7(4):588–594.
  • Bjornstad P, Maahs DM, Cherney DZ, et al. Insulin sensitivity is an important determinant of renal health in adolescents with type 2 diabetes. Diabetes Care. 2014;37(11):3033–3039.
  • Afsar B, Elsurer R, Sezer S, et al. Insulin resistance is associated with increased renal resistive index independent of other factors in newly diagnosed type 2 diabetes mellitus and hypertensive patients. Metabolism. 2010;59(2):279–284.
  • Dengel DR, Goldberg AP, Mayuga RS, et al. Insulin resistance, elevated glomerular filtration fraction, and renal injury. Hypertension. 1996;28(1):127–132.
  • Guízar JM, Kornhauser C, Malacara JM, et al. Renal functional reserve in patients with recently diagnosed Type 2 diabetes mellitus with and without microalbuminuria. Nephron. 2001;87(3):223–230.
  • Emoto M, Nishizawa Y, Maekawa K, et al. Insulin resistance in non-obese, non-insulin-dependent diabetic patients with diabetic nephropathy. Metabolism. 1997;46(9):1013–1018.
  • Dave N, Wu J, Thomas S. Chronic kidney disease-induced insulin resistance: current state of the field. Curr Diab Rep. 2018;18(7):44.
  • Roshanravan B, Zelnick LR, Djucovic D, et al. Chronic kidney disease attenuates the plasma metabolome response to insulin. JCI Insight. 2018;3(16). 10.1172/jci.insight.122219.
  • Garg P. A review of podocyte biology. Am J Nephrol. 2018;47(Suppl 1):3–13.
  • Nair M, le Roux CW, Docherty NG. Mechanisms underpinning remission of albuminuria following bariatric surgery. Curr Opin Endocrinol Diabetes Obes. 2016;23(5):366–372.
  • RJ C, GI W, Yang J, et al. The human glomerular podocyte is a novel target for insulin action. Diabetes. 2005;54(11):3095–3102.
  • Tejada T, Catanuto P, Ijaz A, et al. Failure to phosphorylate AKT in podocytes from mice with early diabetic nephropathy promotes cell death. Kidney Int. 2008;73(12):1385–1393.
  • GI W, Lj H, Eremina V, et al., Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 2010;12(4): 329–340.
  • RJ C, GI W, Koziell A, et al. Nephrin is critical for the action of insulin on human glomerular podocytes. Diabetes. 2007;56(4):1127–1135.
  • Mima A, Ohshiro Y, Kitada M, et al. Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney Int. 2011;79(8):883–896.
  • Mima A, Yasuzawa T, Nakamura T, et al. Linagliptin affects IRS1/Akt signaling and prevents high glucose-induced apoptosis in podocytes. Sci Rep. 2020;10(1):5775.
  • Santamaria B, Marquez E, Lay A, et al. IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes. Biochim Biophys Acta. 2015;1853(12):3224–3234.
  • Kim EY, Dryer SE. Effects of insulin and high glucose on mobilization of slo1 BKCa channels in podocytes. J Cell Physiol. 2011;226(9):2307–2315.
  • Lay AC, Hurcombe JA, Betin VMS, et al. Prolonged exposure of mouse and human podocytes to insulin induces insulin resistance through lysosomal and proteasomal degradation of the insulin receptor. Diabetologia. 2017;60(11):2299–2311.
  • Piwkowska A, Rogacka D, Kasztan M, et al. Insulin increases glomerular filtration barrier permeability through dimerization of protein kinase G type Iα subunits. Biochim Biophys Acta. 2013;1832(6):791–804.
  • Piwkowska A, Rogacka D, Angielski S, et al. Insulin stimulates glucose transport via protein kinase G type I alpha-dependent pathway in podocytes. Biochem Biophys Res Commun. 2014;446(1):328–334.
  • Kim JJ, Wilbon SS, Fornoni A. Podocyte Lipotoxicity in CKD. Kidney360. 2021;2(4):755–762.
  • Lennon R, Pons D, Sabin MA, et al. Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrol Dial Transplant. 2009;24(11):3288–3296.
  • Denhez B, Rousseau M, Spino C, et al. Saturated fatty acids induce insulin resistance in podocytes through inhibition of IRS1 via activation of both IKKβ and mTORC1. Sci Rep. 2020;10(1):21628.
  • Hyvönen ME, Saurus P, Wasik A, et al. Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes. Mol Cell Endocrinol. 2010;328(1–2):70–79.
  • Lizotte F, Denhez B, Guay A, et al. Persistent insulin resistance in podocytes caused by epigenetic changes of SHP-1 in diabetes. Diabetes. 2016;65(12):3705–3717.
  • Mima A, Kitada M, Geraldes P, et al. Glomerular VEGF resistance induced by PKCδ/SHP-1 activation and contribution to diabetic nephropathy. Faseb J. 2012;26(7):2963–2974.
  • Martin WP, Tuohy C, Doody A, et al. Parallel assessment of albuminuria and plasma sTNFR1 in people with type 2 diabetes and advanced chronic kidney disease provides accurate prognostication of the risks of renal decline and death. Sci Rep. 2020;10(1):14852.
  • Carrero JJ, Grams ME, Sang Y, et al. Albuminuria changes are associated with subsequent risk of end-stage renal disease and mortality. Kidney Int. 2017;91(1):244–251.
  • Erkan E. Proteinuria and progression of glomerular diseases. Pediatr Nephrol. 2013;28(7):1049–1058.
  • Butlen D, Vadrot S, Roseau S, et al. Insulin receptors along the rat nephron: [125I] insulin binding in microdissected glomeruli and tubules. Pflugers Arch. 1988;412(6):604–612.
  • Sechi LA, De Carli S, Bartoli E. In situ characterization of renal insulin receptors in the rat. J Recept Res. 1994;14(6–8):347–356.
  • Gatica R, Bertinat R, Silva P, et al. Altered expression and localization of insulin receptor in proximal tubule cells from human and rat diabetic kidney. J Cell Biochem. 2013;114(3):639–649.
  • Tiwari S, Halagappa VK, Riazi S, et al. Reduced expression of insulin receptors in the kidneys of insulin-resistant rats. J Am Soc Nephrol. 2007;18(10):2661–2671.
  • Meijer RI, Barrett EJ. The insulin receptor mediates insulin’s early plasma clearance by liver, muscle, and kidney. Biomedicines. 2021;9(1):1.
  • Tiwari S, Singh RS, Li L, et al., Deletion of the insulin receptor in the proximal tubule promotes hyperglycemia. J Am Soc Nephrol. 2013;24(8): 1209–1214.
  • Eid A, Bodin S, Ferrier B, et al. Intrinsic gluconeogenesis is enhanced in renal proximal tubules of Zucker diabetic fatty rats. J Am Soc Nephrol. 2006;17(2):398–405.
  • Uehara-Watanabe N, Okuno-Ozeki N, Minamida A, et al. Direct evidence of proximal tubular proliferation in early diabetic nephropathy. Sci Rep. 2022;12(1):778.
  • Helal I, Fick-Brosnahan GM, Reed-Gitomer B, et al. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012;8(5):293–300.
  • Ghezzi C, Wright EM. Regulation of the human Na+-dependent glucose cotransporterhSGLT2. Am J Physiol Cell Physiol. 2012;303(3):C348–354.
  • Fuster DG, Bobulescu IA, Zhang J, et al. Characterization of the regulation of renal Na+/H+ exchanger NHE3 by insulin. Am J Physiol Renal Physiol. 2007;292(2):F577–585.
  • Sun H, Niisato N, Inui T, et al. Insulin is involved in transcriptional regulation of NKCC and the CFTR Cl(-) channel through PI3K activation and ERK inactivation in renal epithelial cells. J Physiol Sci. 2014;64(6):433–443.
  • Chávez-Canales M, Arroyo JP, Ko B, et al. Insulin increases the functional activity of the renal NaCl cotransporter. J Hypertens. 2013;31(2):303–311.
  • Blazer-Yost BL, Liu X, Helman SI. Hormonal regulation of ENaCs: insulin and aldosterone. Am J Physiol. 1998;274(5):C1373–1379.
  • Tiwari S, Sharma N, Gill PS, et al., Impaired sodium excretion and increased blood pressure in mice with targeted deletion of renal epithelial insulin receptor. Proc Natl Acad Sci U S A. 2008;105(17): 6469–6474.
  • Li L, Garikepati RM, Tsukerman S, et al. Salt sensitivity of nitric oxide generation and blood pressure in mice with targeted knockout of the insulin receptor from the renal tubule. Am J Physiol Regul Integr Comp Physiol. 2012;303(5):R505–512.
  • Peters KE, Davis WA, Ito J, et al. Validation of a protein biomarker test for predicting renal decline in type 2 diabetes: the fremantle diabetes study phase II. J Diabetes Complications. 2019;33(12):107406.
  • Sarafidis PA, Stafylas PC, Georgianos PI, et al. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am J Kidney Dis. 2010;55(5):835–847.
  • Wilkinson MJ, Manoogian ENC, Zadourian A, et al. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020;31(1):92–104.e105.
  • Khoo CM, Chen J, Pamuklar Z, et al. Effects of Roux-en-Y gastric bypass or diabetes support and education on insulin sensitivity and insulin secretion in morbidly obese patients with type 2 diabetes. Ann Surg. 2014;259(3):494–501.
  • Mima A, Hiraoka-Yamomoto J, Li Q, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCβ activation in diabetes. Diabetes. 2012;61(11):2967–2979.
  • Hsieh MC, Lin KD, Tien KJ, et al. Common polymorphisms of the peroxisome proliferator-activated receptor-gamma (Pro12Ala) and peroxisome proliferator-activated receptor-gamma coactivator-1 (Gly482Ser) and the response to pioglitazone in Chinese patients with type 2 diabetes mellitus. Metabolism. 2010;59(8):1139–1144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.