2,475
Views
0
CrossRef citations to date
0
Altmetric
Review

Designer GLP1 poly-agonist peptides in the management of diabesity

, , , , &
Pages 231-240 | Received 02 Feb 2023, Accepted 17 Apr 2023, Published online: 24 Apr 2023

References

  • WHO: Obesity and overweight [internet]. World Health Organisation; 2021. [cited 2022 Dec 30]; Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  • Golubic R, Barber TM, Caleyachetty R. Obesity definition for personalised treatment of type 2 diabetes. Lancet. 2022;399(10342):2189.
  • Caleyachetty R, Barber TM, Mohammed NI, et al. Ethnicity-specific BMI cutoffs for obesity based on type 2 diabetes risk in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2021;9(7):419–426. DOI:10.1016/S2213-8587(21)00088-7
  • Khan MAB, Hashim MJ, King JK, et al. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107–111.
  • LaBarre J. Sur les possibilités d’un traitement du diabète par I’incrétine. Bull Acad R Med Belg. 1932;12:620–634.
  • Avery AR, Duncan GE. Heritability of type 2 diabetes in the Washington State Twin Registry. Twin Res Hum Genet. 2019;22(2):95–98.
  • Willemsen G, Ward KJ, Bell CG, et al. The concordance and heritability of type 2 diabetes in 34,166 twin pairs from international twin registers: the discordant twin (DISCOTWIN) Consortium. Twin Res Hum Genet. 2015;18(6):762–771. DOI:10.1017/thg.2015.83
  • Hanson P, Weickert MO, Barber TM. Obesity: novel and unusual predisposing factors. Ther Adv Endocrinol Metab. 2020;11:2042018820922018.
  • Elder PJD, Ramsden DB, Burnett D, et al. Human amylase gene copy number variation as a determinant of metabolic state. Expert Rev Endocrinol Metab. 2018;13(4):193–205.
  • Barber TM, Bhatti AA, Elder PJD, et al. AMY1 gene copy number correlates with glucose absorption and visceral fat volume, but not with insulin resistance. J Clin Endocrinol Metab. 2020;105(10):e3586–3596. DOI:10.1210/clinem/dgaa473
  • Brown E, Wilding JPH, Barber TM, et al. Weight loss variability with SGLT2 inhibitors and GLP-1 receptor agonists in type 2 diabetes mellitus and obesity: mechanistic possibilities. Obes Rev. 2019;20(6):816–828.
  • Hanson P, Randeva H, Cuthbertson DJ, et al. The DAPA-DIET study: metabolic response to Dapagliflozin combined with dietary carbohydrate restriction in patients with Type 2 Diabetes Mellitus and Obesity-A longitudinal cohort study. Endocrinol Diabetes Metab. 2022;5(6):e381. DOI:10.1002/edm2.381
  • Davies MJ, Russell-Jones D, Barber TM, et al. Glycaemic benefit of iGlarlixi in insulin-naive type 2 diabetes patients with high HbA1c or those with inadequate glycaemic control on two oral antihyperglycaemic drugs in the LixiLan-O randomized trial. Diab Obes Metab. 2019;21(8):1967–1972. DOI:10.1111/dom.13791
  • Caruso I, Giorgino F. SGLT-2 inhibitors as cardio-renal protective agents. Metabolism. 2022;127:154937.
  • Giugliano D, Scappaticcio L, Longo M, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol. 2021;20(1):189. DOI:10.1186/s12933-021-01366-8
  • Brown E, Wilding JPH, Alam U, et al. The expanding role of SGLT2 inhibitors beyond glucose-lowering to cardiorenal protection. Ann Med. 2021;53(1):2072–2089.
  • Ma H, Lin YH, Dai LZ, et al. Efficacy and safety of GLP-1 receptor agonists versus SGLT-2 inhibitors in overweight/obese patients with or without diabetes mellitus: a systematic review and network meta-analysis. BMJ Open. 2023;13(3):e061807.
  • Gribble FM. The gut endocrine system as a coordinator of postprandial nutrient homoeostasis. Proc Nutr Soc. 2012;71(4):456–462.
  • Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Investig. 2010;1(1–2):8–23.
  • Conlon JM, O’Harte FPM, Flatt PR. Dual-agonist incretin peptides from fish with potential for obesity-related Type 2 diabetes therapy - a review. Peptides. 2022;147:170706.
  • Capozzi ME, DiMarchi RD, Tschöp MH, et al. Targeting the incretin/glucagon system with triagonists to treat diabetes. Endocr Rev. 2018;39(5):719–738.
  • Carabotti M, Scirocco A, Maselli MA, et al. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209.
  • Barber TM, Valsamakis G, Mastorakos G, et al. Dietary influences on the microbiota–gut–brain axis. Int J Mol Sci. 2021;22(7):3502. DOI:10.3390/ijms22073502
  • Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–312.
  • Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diab Obes Metab. 2018;20(Suppl 1):5–21.
  • Buchan AM, Polak JM, Capella C, et al. Electron immunocytochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) in man. Histochemistry. 1978;56(1):37–44.
  • Baggio LL, Drucker DJ. Biology of incretins: gLP-1 and GIP. Gastroenterology. 2007;132(6):2131–2157.
  • Delgado-Aros S, Kim DY, Burton DD, et al. Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am J Physiol Gastrointest Liver Physiol. 2002;282(3):G424–31.
  • Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27(4):740–756.
  • Jalleh RJ, Jones KL, Rayner CK, et al. Normal and disordered gastric emptying in diabetes: recent insights into (patho)physiology, management and impact on glycaemic control. Diabetologia. 2022;65(12):1981–1993.
  • Watson LE, Xie C, Wang X, et al. Gastric emptying in patients with well-controlled type 2 diabetes compared with young and older control subjects without diabetes. J Clin Endocrinol Metab. 2019;104(8):3311–3319.
  • Xie C, Huang W, Wang X, et al. Gastric emptying in health and type 2 diabetes: an evaluation using a 75 g oral glucose drink. Diabet Res Clin Pract. 2021;171:108610.
  • Barber TM, Begbie H, Levy J. The incretin pathway as a new therapeutic target for obesity. Maturitas. 2010;67(3):197–202.
  • Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest. 1967;46(12):1954–1962.
  • Stožer A, Paradiž Leitgeb E, Pohorec V, et al. The role of CAMP in beta cell stimulus-secretion and intercellular coupling. Cells. 2021;10(7):1658.
  • Graaf C, Donnelly D, Wootten D, et al. Glucagon-Like Peptide-1 and Its Class B G protein-coupled receptors: a long march to therapeutic successes. Pharmacol Rev. 2016;68(4):954–1013.
  • Wu S, Gao L, Cipriani A, et al. The effects of incretin-based therapies on β-cell function and insulin resistance in type 2 diabetes: a systematic review and network meta-analysis combining 360 trials. Diab Obes Metab. 2019;21(4):975–983.
  • Lee YS, Jun HS. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism. 2014;63(1):9–19.
  • Cunha DA, Ladrière L, Ortis F, et al. Glucagon-like peptide-1 agonists protect pancreatic beta-cells from lipotoxic endoplasmic reticulum stress through upregulation of BiP and JunB. Diabetes. 2009;58(12):2851–2862.
  • Trujillo JM, Nuffer W, Smith BA. GLP-1 receptor agonists: an updated review of head-to-head clinical studies. Ther Adv Endocrinol Metab. 2021;12:2042018821997320.
  • Elahi D, McAloon-Dyke M, Fukagawa NK, et al. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regul Pept. 1994;51(1):63–74.
  • Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387(3):205–216.
  • El Eid L, Reynolds CA, Tomas A, et al. Biased agonism and polymorphic variation at the GLP-1 receptor: implications for the development of personalised therapeutics. Pharmacol Res. 2022;184:106411.
  • Willard FS, Douros JD, Gabe MB, et al. Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist. JCI Insight. 2020;5(17):e140532.
  • An Z, Prigeon RL, D’Alessio DA. Improved glycemic control enhances the incretin effect in patients with type 2 diabetes. J Clin Endocrinol Metab. 2013;98(12):4702–4708.
  • Wu T, Ma J, Bound MJ, et al. Effects of sitagliptin on glycemia, incretin hormones, and antropyloroduodenal motility in response to intraduodenal glucose infusion in healthy lean and obese humans and patients with type 2 diabetes treated with or without metformin. Diabetes. 2014;63(8):2776–2787.
  • Gerich JE. Physiology of glucagon. Int Rev Physiol. 1981;24:243–275.
  • Kleinert M, Sachs S, Habegger KM, et al. Glucagon regulation of energy expenditure. Int J Mol Sci. 2019;20(21):5407.
  • Janah L, Kjeldsen S, Galsgaard KD, et al. Glucagon receptor signaling and glucagon resistance. Int J Mol Sci. 2019;20(13):3314.
  • Drucker DJ. Mini review: the glucagon-like peptides. Endocrinology. 2001;142(2):521–527.
  • Ji L, Gao L, Jiang H, et al. Safety and efficacy of a GLP-1 and glucagon receptor dual agonist mazdutide (IBI362) 9 mg and 10 mg in Chinese adults with overweight or obesity: a randomised, placebo-controlled, multiple-ascending-dose phase 1b trial. EClinicalMedicine. 2022;54:101691.
  • Nahra R, Wang T, Gadde KM, et al. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: a 54-week randomized phase 2b study. Diabetes Care. 2021;44(6):1433–1442.
  • Asano M, Sekikawa A, Kim H, et al. Pharmacokinetics, safety, tolerability and efficacy of cotadutide, a glucagon-like peptide-1 and glucagon receptor dual agonist, in phase 1 and 2 trials in overweight or obese participants of Asian descent with or without type 2 diabetes. Diab Obes Metab. 2021;23(8):1859–1867.
  • Xiao C, Pavlic M, Szeto L, et al. Effects of acute hyperglucagonemia on hepatic and intestinal lipoprotein production and clearance in healthy humans. Diabetes. 2011;60(2):383–390.
  • Moran TH, Kinzig KP. Gastrointestinal satiety signals II. Cholecystokinin. Am J Physiol Gastrointest Liver Physiol. 2004;286(2):G183–8.
  • Trevaskis JL, Sun C, Athanacio J, et al. Synergistic metabolic benefits of an exenatide analogue and cholecystokinin in diet-induced obese and leptin-deficient rodents. Diab Obes Metab. 2015;17(1):61–73.
  • Hornigold DC, Roth E, Howard V, et al. A GLP-1: cCK fusion peptide harnesses the synergistic effects on metabolism of CCK-1 and GLP-1 receptor agonism in mice. Appetite. 2018;127:334–340.
  • Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418(6898):650–654.
  • le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243(1):108–114.
  • Milliken BT, Elfers C, Chepurny OG, et al. Design and evaluation of peptide dual-agonists of GLP-1 and NPY2 receptors for glucoregulation and weight loss with mitigated nausea and emesis. J Med Chem. 2021;64(2):1127–1138.
  • Zhang Y, Rahematpura S, Ragnini KH, et al. A novel dual agonist of glucagon-like peptide-1 receptors and neuropeptide Y2 receptors attenuates fentanyl taking and seeking in male rats. Neuropharmacology. 2021;192:108599.
  • Østergaard S, Paulsson JF, Kjaergaard Gerstenberg M, et al. The Design of a GLP-1/PYY dual acting agonist. Angew Chem Int Ed Engl. 2021;60(15):8268–8275.
  • Yang Q, Tang W, Sun L, et al. Design of Xenopus GLP-1-Based Long-Acting Dual GLP-1/Y(2) Receptor Agonists. J Med Chem. 2022;65(20):14201–14220.
  • Rosete BE, Wendel D, Horslen SP. Teduglutide for pediatric short bowel syndrome patients. Expert Rev Gastroenterol Hepatol. 2021;15(7):727–733.
  • Drucker DJ. Glucagon-like peptide 2. J Clin Endocrinol Metab. 2001;86(4):1759–1764.
  • Olsen MB, Hövelmann U, Griffin J, et al. 335-OR: dapiglutide, a Once-Weekly GLP-1R/GLP-2R dual agonist, was safe and well tolerated and showed dose-dependent body weight loss over four weeks in healthy subjects. Diabetes. 2022;71(Supplement_1):335–OR.
  • Reiner J, Thiery J, Held J, et al. The dual GLP-1 and GLP-2 receptor agonist dapiglutide promotes barrier function in murine short bowel. Ann N Y Acad Sci. 2022;1514(1):132–141.
  • Reiner J, Berlin P, Held J, et al. Dapiglutide, a novel dual GLP-1 and GLP-2 receptor agonist, attenuates intestinal insufficiency in a murine model of short bowel. JPEN J Parenter Enteral Nutr. 2022;46(5):1107–1118.
  • Jeppesen PB, Hartmann B, Thulesen J, et al. Elevated plasma glucagon-like peptide 1 and 2 concentrations in ileum resected short bowel patients with a preserved colon. Gut. 2000;47(3):370–376.
  • Madsen KB, Askov-Hansen C, Naimi RM, et al. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1+GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients. A placebo-controlled study. Regul Pept. 2013;184:30–39.
  • Pan Q, Lin S, Li Y, et al. A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis. EBioMedicine. 2021;63:103202.
  • Bossart M, Wagner M, Elvert R, et al. Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist. Cell Metab. 2022;34(1):59–74.e10.
  • Li Y, Glotfelty EJ, Namdar I, et al. Neurotrophic and neuroprotective effects of a monomeric GLP-1/GIP/Gcg receptor triagonist in cellular and rodent models of mild traumatic brain injury. Exp Neurol. 2020;324:113113.
  • Li T, Jiao JJ, Hölscher C, et al. A novel GLP-1/GIP/Gcg triagonist reduces cognitive deficits and pathology in the 3xTg mouse model of Alzheimer’s disease. Hippocampus. 2018;28(5):358–372.
  • Zhao S, Yan Z, Du Y, et al. A GLP-1/glucagon (GCG)/CCK(2) receptors tri-agonist provides new therapy for obesity and diabetes. Br J Pharmacol. 2022;179(17):4360–4377.
  • WHO: Accelerating action to stop obesity [internet]. World Health Organisation; 2022. [cited 2022 Dec 30]; Available from: https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity#:~:text=Effective%20steps%20include%20restricting%20the,access%20to%20affordable%2C%20healthy%20food.
  • Safaei M, Sundararajan EA, Driss M, et al. A systematic literature review on obesity: understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput Biol Med. 2021;136:104754.
  • Sánchez-Garrido MA, Brandt SJ, Clemmensen C, et al. GLP-1/Glucagon receptor co-agonism for treatment of obesity. Diabetologia. 2017;60(10):1851–1861.
  • Arterburn DE, Telem DA, Kushner RF, et al. Benefits and risks of bariatric surgery in adults: a review. JAMA. 2020;324(9):879–887.
  • Oduro-Donkor D, Turner MC, Farnaud S, et al. Modification of fecal microbiota as a mediator of effective weight loss and metabolic benefits following bariatric surgery. Expert Rev Endocrinol Metab. 2020;15(5):363–373.
  • Zhou Z, Ren Q, Jiao S, et al. Discovery of new and highly effective quadruple FFA1 and PPARα/γ/δ agonists as potential anti-fatty liver agents. Eur J Med Chem. 2022;229:114061.
  • Schmitz O, Brock B, Rungby J. Amylin agonists: a novel approach in the treatment of diabetes. Diabetes. 2004;53(suppl_3):S233–8.
  • Jorsal T, Rungby J, Knop FK, et al. GLP-1 and amylin in the treatment of obesity. Curr Diab Rep. 2015;16(1):1.
  • Bello NT, Kemm MH, Ofeldt EM, et al. Dose combinations of exendin-4 and salmon calcitonin produce additive and synergistic reductions in food intake in nonhuman primates. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R945–52.
  • Behary P, Tharakan G, Alexiadou K, et al. Combined GLP-1, oxyntomodulin, and peptide YY improves body weight and glycemia in obesity and prediabetes/type 2 diabetes: a randomized, single-blinded, placebo-controlled study. Diabetes Care. 2019;42(8):1446–1453.
  • Zhang X, Young RL, Bound M, et al. Comparative Effects Of Proximal And Distal Small Intestinal Glucose Exposure On Glycemia, Incretin Hormone Secretion, And The Incretin Effect In Health And Type 2 Diabetes. Diabetes Care. 2019;42(4):520–528.
  • Bader M, Li Y, Tweedie D, et al. Neuroprotective effects and treatment potential of incretin mimetics in a murine model of mild traumatic brain injury. Front Cell Dev Biol. 2019;7:356.
  • Yang X, Qiang Q, Li N, et al. Neuroprotective mechanisms of glucagon-like peptide-1-based therapies in ischemic stroke: an update based on preclinical research. Front Neurol. 2022;13:844697.
  • Martin B, Golden E, Carlson OD, et al. Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease. Diabetes. 2009;58(2):318–328.