164
Views
0
CrossRef citations to date
0
Altmetric
Review

Promising targetable biomarkers in pancreatic neuroendocrine tumours

, ORCID Icon, , , , , , , , , & show all
Pages 387-398 | Received 13 Apr 2023, Accepted 10 Aug 2023, Published online: 24 Sep 2023

References

  • Rindi G, Mete O, Uccella S, et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol. 2022;33(1):115–154. doi: 10.1007/s12022-022-09708-2
  • Sonbol MB, Mazza GL, Mi L, et al. Survival and incidence patterns of pancreatic neuroendocrine tumors over the last 2 decades: a SEER database analysis. Oncology. 2022;27(7):573–578. doi: 10.1093/oncolo/oyac049
  • Leoncini E, Boffetta P, Michail Shafir K, et al. Increased incidence trend of low-grade and high-grade neuroendocrine neoplasms. Endocrine. 2020;58(2):368–379. doi: 10.1007/s12020-017-1273-x
  • Perren A, Couvelard A, Scoazec JY, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: pathology-diagnosis and prognostic stratification. Neuroendocrinology. 2017;105:196–200. doi: 10.1159/000457956
  • Sorbye H, Grande E, Pavel M, et al. European Neuroendocrine Tumor Society (ENETS) 2023 guidance paper for digestive neuroendocrine carcinoma. J Neuroendocrinol. 2023;e13249. doi: 10.1111/jne.13249. Epub 2023 Mar 16.
  • Rindi G, Klersy C, Albarello L, et al. Competitive testing of the WHO 2010 versus the WHO 2017 grading of pancreatic neuroendocrine neoplasms: data from a large international cohort study. Neuroendocrinology. 2018;107(4):375–386. doi: 10.1159/000494355
  • Scarpa A, Chang DK, Nones K, et al. Whole-genome landscape of pancreatic neuroendocrine tumours. Nature. 2017;543(7643):65–71. doi: 10.1038/nature21063
  • De Dosso S, Grande E, Barriuso J, et al. The targeted therapy revolution in neuroendocrine tumors: in search of biomarkers for patient selection and response evaluation. Cancer Metastasis Rev. 2013;32(3–4):465–477. doi: 10.1007/s10555-013-9421-0
  • Casanovas O, Hicklin DJ, Bergers G, et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8(4):299–309. doi: 10.1016/j.ccr.2005.09.005
  • Terris B, Scoazec JY, Rubbia L, et al. Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology. 1998;32(2):133–138. doi: 10.1046/j.1365-2559.1998.00321.x
  • Bengtsson A, Andersson R, Ansari D. The actual 5-year survivors of pancreatic ductal adenocarcinoma based on real-world data. Sci Rep |. 2020;10(1):16425. doi:10.1038/s41598-020-73525-y
  • Chen J, Yang Y, Liu Y, et al. Prognosis analysis of patients with pancreatic neuroendocrine tumors after surgical resection and the application of enucleation. World J Surg Oncol. 2021;19: doi: 10.1186/s12957-020-02115-z
  • Shyr BS, Shyr BU, Chen SC, et al. Impact of tumor grade on pancreatic neuroendocrine tumors. Asian J Surg. 2022;45(12):2659–2663. doi: 10.1016/j.asjsur.2022.01.094
  • Rinke A, Wittenberg M, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors (PROMID): results of long-term survival. Neuroendocrinology. 2017;104(1):26–32. doi: 10.1159/000443612
  • Caplin ME, Pavel M, Ć Wikła JB, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors for the CLARINET Investigators* a BS TR AC T. N Engl J Med. 2014;371(3):224–233. doi: 10.1056/NEJMoa1316158
  • Schmitt AM, Schmid S, Rudolph T, et al. VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocr Relat Cancer. 2009;16(4):1219–1227. doi: 10.1677/ERC-08-0297
  • Nuñez JE, Donadio M, Filho DR, et al. The efficacy of everolimus and sunitinib in patients with sporadic or germline mutated metastatic pancreatic neuroendocrine tumors. J Gastrointest Oncol. 2019;10(4):645. doi: 10.21037/jgo.2019.01.33
  • Zatelli MC, Fanciulli G, Malandrino P, et al. Predictive factors of response to mTOR inhibitors in neuroendocrine tumours. Endocr Relat Cancer. 2016;23(3):R173–R183. doi: 10.1530/ERC-15-0413
  • Bodei L, Kidd MS, Singh A, et al. PRRT neuroendocrine tumor response monitored using circulating transcript analysis: the NETest. Eur J Nucl Med Mol Imaging. 2020;47(4):895. doi: 10.1007/s00259-019-04601-3
  • Bodei L, Kidd MS, Singh A, et al. PRRT genomic signature in blood for prediction of 177Lu-octreotate efficacy. Eur J Nucl Med Mol Imaging. 2018;45(7):1155. doi: 10.1007/s00259-018-3967-6
  • Boyar Cetinkaya R, Vatn M, Aabakken L, et al. Survival and prognostic factors in well-differentiated pancreatic neuroendocrine tumors. Scand J Gastroenterol. 2014;49(6):734–741. doi: http://dx.doi.org/10.3109/00365521.2014.903432
  • Aysal A, Agalar C, Egeli T, et al. Reconsideration of clinicopathologic prognostic factors in pancreatic neuroendocrine tumors for better determination of adverse prognosis. Endocr Pathol. 2021 Dec 32(4):461–472. doi: 10.1007/s12022-021-09687-w. Epub 2021 Jul 20.
  • Bahri H, Laurence L, Edeline J, et al. High prognostic value of 18F-FDG PET for metastatic gastroenteropancreatic neuroendocrine tumors: a long-term evaluation. J Nucl Med. 2014;55(11):1786–1790. doi: 10.2967/jnumed.114.144386
  • Lv Y, Han X, Zhang C, et al. Combined test of serum CgA and NSE improved the power of prognosis prediction of NF-pNets. Endocr Connect. 2018;7(1):169–178. doi: 10.1530/EC-17-0276
  • Tsai HJ, Hsiao CF, Chang JS, et al. The prognostic and predictive role of chromogranin a in gastroenteropancreatic neuroendocrine tumors – a single-center experience. Front Oncol. 2021;11. doi: 10.3389/fonc.2021.741096
  • Hackeng WM, Brosens LAA, Kim JY, et al. Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size. Gut. 2022;71(5):961–973. doi: 10.1136/gutjnl-2020-322595
  • Lianos GD, Alexiou GA, Mangano A, et al. The role of heat shock proteins in cancer. Cancer Lett. 2015;360(2):114–118. doi: 10.1016/j.canlet.2015.02.026
  • Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761–772. doi: 10.1038/nrc1716
  • Butler LM, Ferraldeschi R, Armstrong HK, et al. Maximizing the therapeutic potential of Hsp90 inhibitors. Mol Cancer Res. 2015;13(11):1445. doi: 10.1158/1541-7786.MCR-15-0234
  • Eustace BK, Sakurai T, Stewart JK, et al. Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat Cell Biol. 2004;6(6):507–514. doi: 10.1038/ncb1131
  • Gamboa AC, Ethun CG, Postlewait LM, et al. HSP90 expression and early recurrence in gastroenteropancreatic neuroendocrine tumors: potential for a novel therapeutic target. Surg Oncol. 2020;35:460–465.
  • Lundsten S, Spiegelberg D, Stenerlöw B, et al. The HSP90 inhibitor onalespib potentiates 177Lu-DOTATATE therapy in neuroendocrine tumor cells. Int J Oncol. 2019;55:1287. doi: 10.3892/ijo.2019.4888
  • Karnik SK, Hughes CM, Gu X, et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci U S A. 2005;102(41):14659. doi: 10.1073/pnas.0503484102
  • Marini F, Giusti F, Tonelli F, et al. Pancreatic neuroendocrine neoplasms in multiple endocrine neoplasia type 1. Int J Mol Sci. 2021;22(8):4041. doi: 10.3390/ijms22084041
  • Morel D, Jeffery D, Aspeslagh S, et al. Combining epigenetic drugs with other therapies for solid tumours — past lessons and future promise. Nat Rev Clin Oncol. 2019;17(2):91–107. doi: 10.1038/s41571-019-0267-4
  • Pusceddu S, Corti F, Milione M, et al. Are cyclin‐dependent kinase 4/6 inhibitors without future in neuroendocrine tumors? Oncology. 2020;25(8):e1257. doi: 10.1634/theoncologist.2020-0298
  • Speisky D, Duces A, Bièche I, et al. Molecular profiling of pancreatic neuroendocrine tumors in sporadic and Von Hippel-Lindau patients. Clin Cancer Res. 2012;18(10):2838–2849. doi: 10.1158/1078-0432.CCR-11-2759
  • Jung JH, Sosnowska D, Weaver J, et al. Expression of hypoxia-inducible factors in different stages of pancreatic tumor progression. Reports. 2020;3:30. doi: 10.3390/reports3040030
  • Leslie M. FDA OK’s HIF2α Inhibitor Belzutifan. Cancer Discov. 2021;11:2360–2361.
  • Pilié PG, Tang C, Mills GB, et al. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 2019 Feb 16(2):81–104. doi: 10.1038/s41571-018-0114-z
  • Rose M, Burgess JT, O’Byrne K, et al. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8. doi: 10.3389/fcell.2020.564601.
  • Goldman JW, Raju RN, Gordon GA, et al. A first in human, safety, pharmacokinetics, and clinical activity phase I study of once weekly administration of the Hsp90 inhibitor ganetespib (STA-9090) in patients with solid malignancies. BMC Cancer. 2013;13(1):1–10. doi: 10.1186/1471-2407-13-152
  • Hong DS, Said R, Falchook G, et al. Phase I study of BIIB028, a selective heat shock protein 90 inhibitor, in patients with refractory metastatic or locally advanced solid tumors. Clin Cancer Res. 2013;19(17):4824. doi: 10.1158/1078-0432.CCR-13-0477
  • Doi T, Onozawa Y, Fuse N, et al. Phase I dose-escalation study of the HSP90 inhibitor AUY922 in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;74(3):629. doi: 10.1007/s00280-014-2521-x
  • Klieser E, Swierczynski S, Mayr C, et al. Role of histone deacetylases in pancreas: Implications for pathogenesis and therapy. World J Gastrointest Oncol. 2015;7(12):473–483. doi: 10.4251/wjgo.v7.i12.473
  • Thurn KT, Thomas S, Raha P, et al. Histone deacetylase regulation of ATM-mediated DNA damage signaling. Mol Cancer Ther. 2013;12(10):2078–2087. doi: 10.1158/1535-7163.MCT-12-1242
  • Gao Y, Nihira NT, Bu X, et al. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat Cell Biol. 2020;22(9):1064–1075. doi: 10.1038/s41556-020-0562-4
  • Harachi M, Masui K, Cavenee WK, et al. Protein acetylation at the interface of genetics, epigenetics and environment in cancer. Metabolites. 2021 Apr 1;11(4):216. doi: 10.3390/metabo11040216
  • Klieser E, Urbas R, Stättner S, et al. Comprehensive immunohistochemical analysis of histone deacetylases in pancreatic neuroendocrine tumors: HDAC5 as a predictor of poor clinical outcome. Hum Pathol. 2017;65:41–52. doi: 10.1016/j.humpath.2017.02.009
  • Sun L, Qian Q, Sun G, et al. Valproic acid induces NET cell growth arrest and enhances tumor suppression of the receptor-targeted peptide–drug conjugate via activating somatostatin receptor type II. J Drug Target. 2016;24(2):169–177. doi: 10.3109/1061186X.2015.1066794
  • Sun L, He Q, Tsai C, et al., HDAC inhibitors suppressed small cell lung cancer cell growth and enhanced the suppressive effects of receptor-targeting cytotoxins via upregulating somatostatin receptor II, Am J Transl Res. 2018.
  • Schmitz RL, Weissbach J, Kleilein J, et al. Targeting HDACs in pancreatic neuroendocrine tumor models. Cells. 2021;10(6):1408. doi: 10.3390/cells10061408
  • Pollard JH, Menda Y, Zamba KD, et al. Potential for increasing uptake of radiolabeled 68ga-dotatoc and 123i-mibg in patients with midgut neuroendocrine tumors using a histone deacetylase inhibitor vorinostat. Cancer Biother Radiopharm. 2021;36(8):632–641. doi: 10.1089/cbr.2020.4633
  • Matrood S, De Prisco N, Wissniowski TT, et al. Modulation of pancreatic neuroendocrine neoplastic cell fate by autophagy-mediated death. Neuroendocrinology. 2021;111(10):965–985. doi: 10.1159/000512567
  • Jin N, Lubner SJ, Mulkerin DL, et al. A phase II trial of a histone deacetylase inhibitor Panobinostat in patients with low-grade neuroendocrine tumors. Oncology. 2016;21(7):785. doi: 10.1634/theoncologist.2016-0060
  • Lines KE, Stevenson M, Filippakopoulos P, et al. Epigenetic pathway inhibitors represent potential drugs for treating pancreatic and bronchial neuroendocrine tumors. Oncogenesis. 2017;6(5):e332–e332. doi: 10.1038/oncsis.2017.30
  • Levy BP, Giaccone G, Besse B, et al. Randomised phase 2 study of pembrolizumab plus CC-486 versus pembrolizumab plus placebo in patients with previously treated advanced non-small cell lung cancer. Eur J Cancer. 2019;108:120–128. doi: 10.1016/j.ejca.2018.11.028
  • Hu X, Wang J, Chu M, et al. Emerging role of ubiquitination in the regulation of PD-1/PD-L1 in Cancer Immunotherapy, molecular therapy. 2021;29(3):908–919.
  • Sedky NK, Hamdan AA, Emad S, et al. Insights into the therapeutic potential of histone deacetylase inhibitor/immunotherapy combination regimens in solid tumors. Clin Transl Oncol. Springer Science and Business Media Deutschland GmbH; 2022 Jul 24(7):1262–1273. doi: 10.1007/s12094-022-02779-x. Epub 2022 Jan 23.
  • Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15(6):1–10. doi: 10.1186/gb4184
  • Goel S, Bergholz JS, Zhao JJ. Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer. 2022;22(6):356–372. doi: 10.1038/s41568-022-00456-3
  • Tang LH, Contractor T, Clausen R, et al. Attenuation of the retinoblastoma pathway in pancreatic neuroendocrine tumors due to increased Cdk4/Cdk6. Clin Cancer Res. 2012;18(17):4612–4620. doi: 10.1158/1078-0432.CCR-11-3264
  • Shi Y, Qian ZR, Zhang S, et al. Cell cycle protein expression in neuroendocrine tumors: association of CDK4/CDK6, CCND1, and Phospho-RB1 with proliferative index. Pancreas. 2017;46(10):1347. doi: 10.1097/MPA.0000000000000944
  • Carter AM, Kumar N, Herring B, et al. ARTICLE Cdk5 drives formation of heterogeneous pancreatic neuroendocrine tumors. Oncogenesis. 2021 Dec 3;10(12): 83. doi:10.1038/s41389-021-00372-5
  • The CDK4/6 Inhibitor Palbociclib Induces Anti-Proliferative Mechanisms In Gastroenteropancreatic Neuroendocrine Neoplasms In Vitro. Available from: https://my.enets.org/the-cdk4-6-inhibitor-palbociclib-induces-anti-proliferative-mechanisms-in-gastroenteropancreatic-neuroendocrine-neoplasms-in-vitro.
  • Prada A, Tatjana E, Josef C, et al. The novel cyclin-dependent kinase 4/6 inhibitor ribociclib (LEE011) alone and in dual-targeting approaches demonstrates antitumoral efficacy in neuroendocrine tumors in vitro. Neuroendocrinology. 2018;106(1):58–73. doi: 10.1159/000463386
  • A Pilot Study Of The Cyclin Dependent Kinases 4, 6 Inhibitor Ribociclib In Patients With Foregut Neuroendocrine Tumors. Available from: https://my.enets.org/a-pilot-study-of-the-cyclin-dependent-kinases-4-6-inhibitor-ribociclib-in-patients-with-foregut-neuroendocrine-tumors.
  • Raj NP, Kelly V, Chan JA, et al. A phase II trial of LEE011 in combination with everolimus in the treatment of advanced well differentiated neuroendocrine tumors of foregut origin. J Clin Oncol. 2018;36(4_suppl):TPS546–TPS546. doi: https://doi.org/10.1200/JCO.2018.36.4_suppl.TPS546
  • Grande E, Teulé A, Alonso‐Gordoa T, et al. The PALBONET trial: a phase II study of palbociclib in metastatic grade 1 and 2 pancreatic neuroendocrine tumors (GETNE‐1407). Oncology. 2020;25(9):745. doi: 10.1634/theoncologist.2020-0033
  • Jonasch E, Bauer TM, Papadopoulos KP, et al. Phase 1 LITESPARK-001 (MK-6482-001) study of belzutifan in advanced solid tumors: update of the clear cell renal cell carcinoma (ccRCC) cohort with more than 3 years of total follow-up. J Clin Oncol. 2022;40(16_suppl):4509–4509. doi: https://doi.org/10.1200/JCO.2022.40.16_suppl.4509
  • Papadopoulos KP, Jonasch E, Zojwalla NJ, et al. A first-in-human phase 1 dose-escalation trial of the oral HIF-2a inhibitor PT2977 in patients with advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):2508–2508. doi: 10.1200/JCO.2018.36.15_suppl.2508
  • Jonasch E, Donskov F, Iliopoulos O, et al. Belzutifan for renal cell carcinoma in von Hippel–Lindau disease. N Engl J Med. 2021;385(22):2036–2046. doi: 10.1056/NEJMoa2103425
  • Jonasch E, Iliopoulos O, Rathmell WK, et al. LITESPARK-004 (MK-6482-004) phase 2 study of belzutifan, an oral hypoxia-inducible factor 2α inhibitor (HIF-2α), for von Hippel-Lindau (VHL) disease: update with more than two years of follow-up data. J Clin Oncol. 2022;40(16_suppl):4546–4546. doi: 10.1200/JCO.2022.40.16_suppl.4546
  • Lakiza O, Lutze J, Vogle A, et al. Loss of MEN1 function impairs DNA repair capability of pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2022;29(4):225. doi: 10.1530/ERC-21-0247
  • Nonnekens J, van Kranenburg M, Beerens CEMT, et al. Potentiation of peptide receptor radionuclide therapy by the PARP inhibitor Olaparib. Theranostics. 2016;6(11):1821. doi: 10.7150/thno.15311
  • Purohit NK, Shah RG, Adant S, et al. Potentiation of 177Lu-octreotate peptide receptor radionuclide therapy of human neuroendocrine tumor cells by PARP inhibitor. Oncotarget. 2018;9(37):24693. doi: 10.18632/oncotarget.25266
  • Cullinane C, Waldeck K, Kirby L, et al. Enhancing the anti-tumour activity of 177Lu-DOTA-octreotate radionuclide therapy in somatostatin receptor-2 expressing tumour models by targeting PARP. Sci Rep. 2020;10(1): doi: 10.1038/s41598-020-67199-9
  • Feijtel D, Reuvers TGA, van Tuyll-van Serooskerken C, et al. In vivo efficacy testing of peptide receptor radionuclide therapy radiosensitization using Olaparib. Cancers (Basel). 2023;15(3):915. doi: 10.3390/cancers15030915
  • Zhai BT, Tian H, Sun J, et al. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med. 2022;20:135. doi: 10.1186/s12967-022-03329-3
  • Özdirik B, Stueven A, Knorr J, et al. Soluble Urokinase plasminogen activator receptor (suPAR) concentrations are elevated in patients with neuroendocrine malignancies. J Clin Med. 2020;9(6):1647. doi: 10.3390/jcm9061647
  • Olsen IH, Langer SW, Federspiel BH, et al. 68Ga-DOTATOC PET and gene expression profile in patients with neuroendocrine carcinomas: strong correlation between PET tracer uptake and gene expression of somatostatin receptor subtype 2. Am J Nucl Med Mol Imaging. 2016;6:59.
  • Carlsen EA, Loft M, Loft A, et al. Prospective phase II trial of prognostication by 68Ga-NOTA-AE105 uPAR PET in patients with neuroendocrine neoplasms: implications for uPAR-Targeted therapy. J Nucl Med. 2022;63:1371–1377. doi: 10.2967/jnumed.121.263177
  • Brabander T, Van Der Zwan WA, Teunissen JJM, et al. Cancer therapy: Clinical Long-term efficacy, survival, and safety of [177 Lu-DOTA 0,Tyr 3]octreotate in patients with gastroenteropancreatic and Bronchial neuroendocrine Tumors. Clin Cancer Res. 2017;23(16):4617–4624. doi: 10.1158/1078-0432.CCR-16-2743
  • Strosberg JR, Fine RL, Choi J, et al. First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer. 2011;117:268–275. doi: 10.1002/cncr.25425
  • Caplin ME, Pavel M, Ćwikła JB, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med. 2014;371(3):224–233. doi: 10.1056/NEJMoa1316158
  • Yao JC, Shah MH, Lombard Bohas C, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–523. doi: 10.1056/NEJMoa1009290
  • Raymond E, Dahan L, Raoul J-L, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–513. doi: 10.1056/NEJMoa1003825
  • Werner RA, Solnes LB, Javadi MS, et al. SSTR-RADS version 1.0 as a reporting system for SSTR PET Imaging and selection of potential PRRT candidates: a proposed standardization framework. J Nucl Med. 2018;59(7):1085–1091. doi: 10.2967/jnumed.117.206631
  • Krenning EP, Valkema R, Kooij PP, et al. The role of radioactive somatostatin and its analogues in the control of tumor growth. Recent Results Cancer Res. 2000;153:1–13.
  • Duran I, Kortmansky J, Singh D, et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer. 2006;95(9):1148–1154. doi: 10.1038/sj.bjc.6603419
  • Lane HA, Wood JM, McSheehy PMJ, et al. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res. 2009;15(5):1612–1622. doi: 10.1158/1078-0432.CCR-08-2057
  • Haibe Y, Kreidieh M, El Hajj H, et al. Resistance mechanisms to anti-angiogenic therapies in Cancer. Front Oncol. 2020;10:221. doi: 10.3389/fonc.2020.00221
  • Puccini A, Poorman K, Salem ME, et al. Comprehensive genomic profiling of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). Clin Cancer Res. 2020;26(22):5943. doi: 10.1158/1078-0432.CCR-20-1804
  • Real-time genomic characterization of metastatic pancreatic neuroendocrine tumors has prognostic implications and identifies potential germline actionability, 2018.
  • Ruzic D, Djoković N, Srdić-Rajić T, et al. Targeting histone deacetylases: opportunities for Cancer treatment and Chemoprevention. MDPI; 2022 Jan 16;14(1):209. doi: 10.3390/pharmaceutics14010209
  • Yan J, Yu S, Jia C, et al. Molecular subtyping in pancreatic neuroendocrine neoplasms: New insights into clinical, pathological unmet needs and challenges. Biochim Biophys Acta Rev Cancer 1874. 2020;1874(1):188367. doi: 10.1016/j.bbcan.2020.188367

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.