232
Views
0
CrossRef citations to date
0
Altmetric
Review

Understanding the development of sarcopenic obesity

ORCID Icon, ORCID Icon & ORCID Icon
Pages 469-488 | Received 02 Mar 2023, Accepted 03 Oct 2023, Published online: 16 Oct 2023

References

  • Ortman VAV JA, Hogan H. An aging nation: the older population in the United States. Current Population Reports: (WA). DC; 2014. p. 1–28.
  • Stierman B, Afful J, Carroll MD, et al. National Center for Health Statistics (U.S.). National Health and Nutrition Examination Survey 2017–March 2020 Prepandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes. National Health Statistics Reports; 2021. (NHSR No. 158). https://stacks.cdc.gov/view/cdc/106273
  • Nascimento CM, Ingles M, Salvador-Pascual A, et al. Sarcopenia, frailty and their prevention by exercise. Free Radic Biol Med. 2019 Feb 20;132:42–49. doi: 10.1016/j.freeradbiomed.2018.08.035
  • Larsson L, Degens H, Li M, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev. 2019 Jan 1;99(1):427–511. doi: 10.1152/physrev.00061.2017
  • Donini LM, Busetto L, Bischoff SC, et al. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Clin Nutr. 2022 Apr;41(4):990–1000. doi: 10.1016/j.clnu.2021.11.014
  • Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol. 2018 2018-Sep-1;14(9):513–537. doi: 10.1038/s41574-018-0062-9
  • ! INVALID CITATION! [7].
  • Roderka MN, Puri S, Batsis JA. Addressing obesity to promote healthy Aging. Clin Geriatr Med. 2020 Nov;36(4):631–643. doi: 10.1016/j.cger.2020.06.006
  • Germain CM, Vasquez E, Batsis JA. Physical activity, central adiposity, and functional limitations in community-dwelling older adults. J Geriatr Phys Ther. 2016 Apr;39(2):71–76. doi: 10.1519/JPT.0000000000000051
  • Gao Q, Mei F, Shang Y, et al. Global prevalence of sarcopenic obesity in older adults: a systematic review and meta-analysis. Clin Nutr. 2021 Jul;40(7):4633–4641. doi: 10.1016/j.clnu.2021.06.009
  • Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019 Jan 1;48(1):16–31. doi: 10.1093/ageing/afy169
  • Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010 Jul;39(4):412–423. doi: 10.1093/ageing/afq034
  • Bhasin S, Travison TG, Manini TM, et al. Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium. J Am Geriatr Soc. 2020 2020-Jul-1;68(7):1410–1418. doi: 10.1111/jgs.16372
  • Cawthon PM, Visser M, Arai H, et al. Defining terms commonly used in sarcopenia research: a glossary proposed by the Global Leadership in Sarcopenia (GLIS) Steering Committee. Eur Geriatr Med. 2022 2022-Nov-29;13(6):1239–1244. doi: 10.1007/s41999-022-00706-5
  • Caleyachetty R, Barber TM, Mohammed NI, et al. Ethnicity-specific BMI cutoffs for obesity based on type 2 diabetes risk in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2021 Jul;9(7):419–426. doi: 10.1016/S2213-8587(21)00088-7
  • Batsis JA, Mackenzie TA, Bartels SJ, et al. Diagnostic accuracy of body mass index to identify obesity in older adults: NHANES 1999-2004. Int J Obes (Lond). 2016 May;40(5):761–767. doi: 10.1038/ijo.2015.243
  • Winter JE, MacInnis RJ, Wattanapenpaiboon N, et al. BMI and all-cause mortality in older adults: a meta-analysis. Am J Clin Nutr. 2014 Apr;99(4):875–890. doi: 10.3945/ajcn.113.068122
  • Batsis JA, Barre LK, Mackenzie TA, et al. Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with different research definitions: dual-energy X-ray absorptiometry data from the national health and nutrition examination survey 1999-2004. J Am Geriatr Soc. 2013 Jun;61(6):974–980. doi: 10.1111/jgs.12260
  • Ji T, Li Y, Ma L. Response to letter to the editor, “sarcopenic obesity: an emerging public health problem, but an answer appears to be available”. Aging Dis. 2022 Jun;13(3):637–638. doi: 10.14336/AD.2021.1120-1
  • Gortan Cappellari G, Guillet C, Poggiogalle E, et al. Sarcopenic obesity research perspectives outlined by the sarcopenic obesity global leadership initiative (SOGLI) - proceedings from the SOGLI consortium meeting in rome November 2022. Clin Nutr. 2023 May;42(5):687–699. doi: 10.1016/j.clnu.2023.02.018
  • Baumgartner RN, Wayne SJ, Waters DL, et al. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly [article]. Obes Res. 2004 Dec;12(12):1995–2004. doi: 10.1038/oby.2004.250
  • Wallengren O, Bosaeus I, Frändin K, et al. Comparison of the 2010 and 2019 diagnostic criteria for sarcopenia by the European Working Group on Sarcopenia in Older People (EWGSOP) in two cohorts of Swedish older adults. BMC Geriatr. 2021 2021-Dec-1;21(1). Doi:10.1186/s12877-021-02533-y
  • Hirani V, Naganathan V, Blyth F, et al. Longitudinal associations between body composition, sarcopenic obesity and outcomes of frailty, disability, institutionalisation and mortality in community-dwelling older men: the concord health and ageing in men project. Age Ageing. 2017 May 1;46(3):413–420. doi: 10.1093/ageing/afw214
  • Davison KK, Ford ES, Cogswell ME, et al. Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III. J Am Geriatr Soc. 2002 Nov;50(11):1802–1809. doi: 10.1046/j.1532-5415.2002.50508.x
  • Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the national health and nutrition examination survey III. PLoS One. 2010 May 26;5(5):e10805. doi: 10.1371/journal.pone.0010805
  • Khadra D, Itani L, Tannir H, et al. Association between sarcopenic obesity and higher risk of type 2 diabetes in adults: a systematic review and meta-analysis. World J Diabetes. 2019 May 15;10(5):311–323. doi: 10.4239/wjd.v10.i5.311
  • Han K, Park YM, Kwon HS, et al. Sarcopenia as a determinant of blood pressure in older Koreans: findings from the Korea National Health and Nutrition Examination Surveys (KNHANES) 2008-2010. PLoS One. 2014;9(1):e86902. doi: 10.1371/journal.pone.0086902
  • Chin SO, Rhee SY, Chon S, et al. Sarcopenia is independently associated with cardiovascular disease in older Korean adults: the Korea National Health and Nutrition Examination Survey (KNHANES) from 2009. PLoS One. 2013;8(3):e60119. doi: 10.1371/journal.pone.0060119
  • Baek SJ, Nam GE, Han KD, et al. Sarcopenia and sarcopenic obesity and their association with dyslipidemia in Korean elderly men: the 2008-2010 Korea National Health and Nutrition Examination Survey. J Endocrinol Invest. 2014 Mar;37(3):247–260. doi: 10.1007/s40618-013-0011-3
  • Messier V, Karelis AD, Lavoie ME, et al. Metabolic profile and quality of life in class I sarcopenic overweight and obese postmenopausal women: a MONET study. Appl Physiol Nutr Metab. 2009 Feb;34(1):18–24. doi: 10.1139/H08-135
  • Park SH, Park JH, Song PS, et al. Sarcopenic obesity as an independent risk factor of hypertension. J Am Soc Hypertens. 2013;7(6):420–425. doi: 10.1016/j.jash.2013.06.002
  • Lim S, Kim JH, Yoon JW, et al. Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care. 2010 Jul;33(7):1652–1654. doi: 10.2337/dc10-0107
  • Khadra D, Itani L, Chebaro Y, et al. Association between sarcopenic obesity and metabolic syndrome in adults: a systematic review and meta-analysis. Curr Cardiol Rev. 2020;16(2):153–162. doi: 10.2174/1573403X16666200214104122
  • Atkins JL, Whincup PH, Morris RW, et al. Sarcopenic obesity and risk of cardiovascular disease and mortality: a population-based cohort study of older men. J Am Geriatr Soc. 2014 Feb;62(2):253–260. doi: 10.1111/jgs.12652
  • Atkins JL, Wannamathee SG. Sarcopenic obesity in ageing: cardiovascular outcomes and mortality.British Journal Of Nutrition. 2020 2020-Nov-28;124(10):1102–1113. doi: 10.1017/S0007114520002172
  • Farmer RE, Mathur R, Schmidt AF, et al. Associations between measures of sarcopenic obesity and risk of cardiovascular disease and mortality: a cohort study and mendelian randomization analysis using the UK Biobank. J Am Heart Assoc. 2019 Jul 2;8(13):e011638. doi: 10.1161/JAHA.118.011638
  • Stephen WC, Janssen I. Sarcopenic-obesity and cardiovascular disease risk in the elderly. J Nutr Health Aging. 2009 May;13(5):460–466. doi: 10.1007/s12603-009-0084-z
  • Lutski M, Weinstein G, Tanne D, et al. Overweight, obesity, and late-life Sarcopenia among men with cardiovascular disease, Israel. Prev Chronic Dis. 2020 Dec 24;17:E164. doi: 10.5888/pcd17.200167
  • Xia MF, Chen LY, Wu L, et al. Sarcopenia, sarcopenic overweight/obesity and risk of cardiovascular disease and cardiac arrhythmia: a cross-sectional study. Clin Nutr. 2021 Feb;40(2):571–580. doi: 10.1016/j.clnu.2020.06.003
  • Billingsley HE, Del Buono MG, Canada JM, et al. Sarcopenic obesity is associated with reduced cardiorespiratory fitness compared with nonsarcopenic obesity in patients with heart failure with reduced ejection fraction. Circ Heart Fail. 2022 Oct;15(10):e009518. doi: 10.1161/CIRCHEARTFAILURE.122.009518
  • Saito H, Matsue Y, Kamiya K, et al. Sarcopenic obesity is associated with impaired physical function and mortality in older patients with heart failure: insight from FRAGILE-HF. BMC Geriatr. 2022 Jul 5;22(1):556. doi: 10.1186/s12877-022-03168-3
  • Evans K, Abdelhafiz D, Abdelhafiz AH. Sarcopenic obesity as a determinant of cardiovascular disease risk in older people: a systematic review. Postgrad Med. 2021 Nov;133(8):831–842. doi: 10.1080/00325481.2021.1942934
  • Gandham A, Mesinovic J, Jansons P, et al. Falls, fractures, and areal bone mineral density in older adults with sarcopenic obesity: a systematic review and meta-analysis. Obes Rev. 2021 May;22(5):e13187. doi: 10.1111/obr.13187
  • Turcotte AF, O’Connor S, Morin SN, et al. Association between obesity and risk of fracture, bone mineral density and bone quality in adults: a systematic review and meta-analysis. PLoS One. 2021;16(6):e0252487. doi: 10.1371/journal.pone.0252487
  • Rinonapoli G, Pace V, Ruggiero C, et al. Obesity and bone: a complex relationship. Int J Mol Sci. 2021 Dec 20;22(24):13662. doi: 10.3390/ijms222413662
  • He C, He W, Hou J, et al. Bone and muscle crosstalk in Aging. Front Cell Dev Biol. 2020;8:585644. doi: 10.3389/fcell.2020.585644
  • Lee S, Kim TN, Kim SH. Sarcopenic obesity is more closely associated with knee osteoarthritis than is nonsarcopenic obesity: a cross-sectional study [comparative study]. Arthritis & Rheumatism. 2012 Dec;64(12):3947–3954. doi: 10.1002/art.37696
  • Balogun SA, Graves SE, Lorimer M, et al. Do older adults with low muscle mass or strength, in the presence of obesity, have an increased risk of Joint replacement over 13 years? Calcif Tissue Int. 2020 Jul;107(1):10–17. doi: 10.1007/s00223-020-00698-z
  • Kim HI, Ahn SH, Kim Y, et al. Effects of sarcopenia and sarcopenic obesity on joint pain and degenerative osteoarthritis in postmenopausal women. Sci Rep. 2022 Aug 8;12(1):13543. doi: 10.1038/s41598-022-17451-1
  • Godziuk K, Prado CM, Woodhouse LJ, et al. The impact of sarcopenic obesity on knee and hip osteoarthritis: a scoping review. BMC Musculoskelet Disord. 2018 Jul 28;19(1):271. doi: 10.1186/s12891-018-2175-7
  • Hamer M, Batty GD, Kivimaki M. Sarcopenic obesity and risk of new onset depressive symptoms in older adults: English longitudinal study of ageing. Int J Obes (Lond). 2015 Dec;39(12):1717–1720. doi: 10.1038/ijo.2015.124
  • Ishii S, Chang C, Tanaka T, et al. The Association between sarcopenic obesity and depressive symptoms in older Japanese adults. PLoS One. 2016;11(9):e0162898. doi: 10.1371/journal.pone.0162898
  • Venant V, Pouget M, Lahaye C, et al. Depression severity as a risk factor of sarcopenic obesity in Morbidly obese patients. J Nutr Health Aging. 2019;23(8):761–767. doi: 10.1007/s12603-019-1218-6
  • Kokkeler KJE, van den Berg KS, Comijs HC, et al. Sarcopenic obesity predicts nonremission of late-life depression. Int J Geriatr Psychiatry. 2019 Aug;34(8):1226–1234. doi: 10.1002/gps.5121
  • Li Z, Tong X, Ma Y, et al. Prevalence of depression in patients with sarcopenia and correlation between the two diseases: systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022 Feb;13(1):128–144. doi: 10.1002/jcsm.12908
  • Pilati I, Slee A, Frost R. Sarcopenic obesity and depression: a systematic review. J Frailty Aging. 2022;11(1):51–58. doi: 10.14283/jfa.2021.39
  • Mei KL, Batsis JA, Mills JB, et al. Sarcopenia and sarcopenic obesity: do they predict inferior oncologic outcomes after gastrointestinal cancer surgery? Perioper Med. 2016;5(1):30. doi: 10.1186/s13741-016-0052-1
  • Kim J, Han SH, Kim HI. Detection of sarcopenic obesity and prediction of long-term survival in patients with gastric cancer using preoperative computed tomography and machine learning. J Surg Oncol. 2021 Dec;124(8):1347–1355. doi: 10.1002/jso.26668
  • EH VR, Bours MJL, Te Molder MEM, et al. Associations of adipose and muscle tissue parameters at colorectal cancer diagnosis with long-term health-related quality of life. Qual Life Res. 2017 Jul;26(7):1745–1759. doi: 10.1007/s11136-017-1539-z
  • Kroh A, Uschner D, Lodewick T, et al. Impact of body composition on survival and morbidity after liver resection in hepatocellular carcinoma patients. Hepatobiliary Pancreat Dis Int. 2019 Feb;18(1):28–37. doi: 10.1016/j.hbpd.2018.07.008
  • Gortan Cappellari G, Brasacchio C, Laudisio D, et al. Sarcopenic obesity: what about in the cancer setting? Nutrition. 2022 Jun;98:111624.
  • Silveira EA, da Silva Filho RR, Spexoto MCB, et al. The role of sarcopenic obesity in cancer and cardiovascular disease: a synthesis of the evidence on pathophysiological aspects and clinical implications. Int J Mol Sci. 2021 Apr 21;22(9):4339. doi: 10.3390/ijms22094339
  • Prado CM, Lieffers JR, McCargar LJ, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008 Jul;9(7):629–635. doi: 10.1016/S1470-2045(08)70153-0
  • Prado CM, Maia YL, Ormsbee M, et al. Assessment of nutritional status in cancer–the relationship between body composition and pharmacokinetics. Anticancer Agents Med Chem. 2013 Oct;13(8):1197–1203. doi: 10.2174/18715206113139990322
  • Prado CM, Lieffers JR, Bowthorpe L, et al. Sarcopenia and physical function in overweight patients with advanced cancer. Can J Diet Pract Res. 2013;74(2):69–74. doi: 10.3148/74.2.2013.69
  • Meza-Junco J, Montano-Loza AJ, Baracos VE, et al. Sarcopenia as a prognostic index of nutritional status in concurrent cirrhosis and hepatocellular carcinoma. J Clin Gastroenterol. 2013;47(10):861–870. doi: 10.1097/MCG.0b013e318293a825
  • Silva Neto LS, Karnikowiski MG, Tavares AB, et al. Association between sarcopenia, sarcopenic obesity, muscle strength and quality of life variables in elderly women. Rev Bras Fisioter. 2012;16(5):360–367. doi: 10.1590/S1413-35552012005000044
  • Ware JE Jr., Kosinski M, Bjorner JB, et al. User’s manual for the SF-12v2 health survey. Lincoln: Quality Metric Incorporated; 2009.
  • Group E. EuroQol–a new facility for the measurement of health-related quality of life. Health Policy. 1990 Dec;16(3):199–208.
  • Chang SF, Chiu SC. Effect of resistance training on quality of life in older people with sarcopenic obesity living in long-term care institutions: a quasi-experimental study. J Clin Nurs. 2020 Jul;29(13–14):2544–2556. doi: 10.1111/jocn.15277
  • Itani L, Kreidieh D, El Masri D, et al. The impact of sarcopenic obesity on health-related quality of life of treatment-seeking patients with obesity. Curr Diabetes Rev. 2020;16(6):635–640. doi: 10.2174/1573399816666200211102057
  • Beberashvili I, Azar A, Khatib A, et al. Sarcopenic obesity versus nonobese sarcopenia in hemodialysis patients: differences in nutritional status, quality of life, and clinical outcomes. J Ren Nutr. 2023 Jan;33(1):147–156. doi: 10.1053/j.jrn.2022.05.003
  • Martínez-Herrera BE, Trujillo-Hernández B, Sat-Muñoz D, et al. Quality of life and functionality of head and neck cancer patients are diminished as a function of sarcopenia and obesity. Ear Nose Throat J. 2022 Feb;28:1455613221076791.
  • Cawthon PM, Lui LY, McCulloch CE, et al. Sarcopenia and health care utilization in older women. J Gerontol A Biol Sci Med Sci. 2017 Jan;72(1):95–101. doi: 10.1093/gerona/glw118
  • Arensberg MB, Brunton C, Drawert S, et al. Prevalence rates and characteristics of malnutrition, frailty, and other Nutrition and muscle mass-related conditions document potential quality of care gap for medicare patients in US skilled nursing facilities. Geriatrics (Basel). 2022 Mar 31;7(2):42. doi: 10.3390/geriatrics7020042
  • Janssen I, Shepard DS, Katzmarzyk PT, et al. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004 Jan;52(1):80–85. doi: 10.1111/j.1532-5415.2004.52014.x
  • Akune T, Muraki S, Oka H, et al. Incidence of certified need of care in the long-term care insurance system and its risk factors in the elderly of Japanese population-based cohorts: the ROAD study. Geriatr Gerontol Int. 2014 Jul;14(3):695–701. doi: 10.1111/ggi.12155
  • Bravo-José P, Moreno E, Espert M, et al. Prevalence of sarcopenia and associated factors in institutionalised older adult patients. Clin Nutr ESPEN. 2018 Oct;27:113–119.
  • Nizalova O, Gousia K, Forder J. Effect of body mass on future long-term care use. BMC Geriatr. 2020 Aug 17;20(1):293. doi: 10.1186/s12877-020-01688-4
  • Elkins JS, Whitmer RA, Sidney S, et al. Midlife obesity and long-term risk of nursing home admission. Obesity (Silver Spring). 2006 Aug;14(8):1472–1478. doi: 10.1038/oby.2006.167
  • Valiyeva E, Russell LB, Miller JE, et al. Lifestyle-related risk factors and risk of future nursing home admission. Arch Intern Med. 2006 May 8;166(9):985–990. doi: 10.1001/archinte.166.9.985
  • Cai S, Rahman M, Intrator O. Obesity and pressure ulcers among nursing home residents. Med care. 2013 Jun;51(6):478–486. doi: 10.1097/MLR.0b013e3182881cb0
  • Wannamethee SG, Shaper AG, Lennon L, et al. Decreased muscle mass and increased central adiposity are independently related to mortality in older men. Am J Clin Nutr. 2007 Nov;86(5):1339–1346. doi: 10.1093/ajcn/86.5.1339
  • Batsis JA, Mackenzie TA, Barre LK, et al. Sarcopenia, sarcopenic obesity and mortality in older adults: results from the national health and nutrition examination survey III. Eur J Clin Nutr. 2014 2014-Sep-1;68(9):1001–1007. doi: 10.1038/ejcn.2014.117
  • Hamer M, O’Donovan G. Sarcopenic obesity, weight loss, and mortality: the English longitudinal study of ageing. Am J Clin Nutr. 2017 Jul;106(1):125–129. doi: 10.3945/ajcn.117.152488
  • Zhang L, Lv J, Wang C, et al. Myokine, a key cytokine for physical exercise to alleviate Sarcopenic obesity. Mol Biol Rep. 2022 Dec 26;50(3):2723–2734. doi: 10.1007/s11033-022-07821-3
  • Flegal KM, Shepherd JA, Looker AC, et al. Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults. Am J Clin Nutr. 2009 Feb;89(2):500–508. doi: 10.3945/ajcn.2008.26847
  • Heo M, Faith MS, Pietrobelli A, et al. Percentage of body fat cutoffs by sex, age, and race-ethnicity in the US adult population from NHANES 1999-2004. Am J Clin Nutr. 2012 Mar;95(3):594–602. doi: 10.3945/ajcn.111.025171
  • Xu W, Perera S, Medich D, et al. Height loss, vertebral fractures, and the misclassification of osteoporosis. Bone. 2011 Feb;48(2):307–311. doi: 10.1016/j.bone.2010.09.027
  • Stenholm S, Harris TB, Rantanen T, et al. Sarcopenic obesity: definition, cause and consequences [review]. Curr Opin Clin Nutr Metab Care. 2008 Nov;11(6):693–700. doi: 10.1097/MCO.0b013e328312c37d
  • Cartwright MJ, Tchkonia T, Kirkland JL. Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol. 2007 Jun;42(6):463–471. doi: 10.1016/j.exger.2007.03.003
  • Kuk JL, Ardern CI. Influence of age on the association between various measures of obesity and all-cause mortality. J Am Geriatr Soc. 2009 Nov;57(11):2077–2084. doi: 10.1111/j.1532-5415.2009.02486.x
  • Sayer AA, Syddall H, Martin H, et al. The developmental origins of sarcopenia. J Nutr Health Aging. 2008 Aug;12(7):427–432. doi: 10.1007/BF02982703
  • Goodpaster BH, Carlson CL, Visser M, et al. Attenuation of skeletal muscle and strength in the elderly: the health ABC study. J Appl Physiol (1985). 2001 Jun;90(6):2157–2165. doi: 10.1152/jappl.2001.90.6.2157
  • Mitchell WK, Williams J, Atherton P, et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. doi: 10.3389/fphys.2012.00260
  • Kob R, Fellner C, Bertsch T, et al. Gender-specific differences in the development of sarcopenia in the rodent model of the ageing high-fat rat. J Cachexia Sarcopenia Muscle. 2015 Jun;6(2):181–191. doi: 10.1002/jcsm.12019
  • Kemmler W, von Stengel S, Schoene D. Longitudinal changes in muscle mass and function in older men at increased risk for sarcopenia - the FrOST-Study. J Frailty Aging. 2019;8(2):57–61. doi: 10.14283/jfa.2019.9
  • Kim TN, Park MS, Lim KI, et al. Relationships between sarcopenic obesity and insulin resistance, inflammation, and vitamin D status: the Korean sarcopenic obesity study. Clin Endocrinol (Oxf). 2013 Apr;78(4):525–532. doi: 10.1111/j.1365-2265.2012.04433.x
  • Jyväkorpi SK, Urtamo A, Kivimäki M, et al. Macronutrient composition and sarcopenia in the oldest-old men: the Helsinki Businessmen study (HBS). Clin Nutr. 2020 12;39(12):3839–3841. doi: 10.1016/j.clnu.2020.04.024
  • Custodero C, Mankowski RT, Lee SA, et al. Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: a systematic review and meta-analysis. Ageing Res Rev. 2018 2018-Sep-1;46:42–59.
  • Cornish SM, Cordingley DM, Shaw KA, et al. Effects of omega-3 supplementation alone and combined with resistance exercise on skeletal muscle in older adults: a systematic review and meta-analysis. Nutrients. 2022 2022-May-26;14(11):2221. doi: 10.3390/nu14112221
  • Ganapathy A, Nieves JW. Nutrition and sarcopenia—what do we know?Nutrients. 2020 2020-Jun-11;12(6):1755. doi: 10.3390/nu12061755
  • Neville CE, Young IS, Gilchrist SECM, et al. Effect of increased fruit and vegetable consumption on physical function and muscle strength in older adults. Age. 2013 2013-Dec-1;35(6):2409–2422. doi: 10.1007/s11357-013-9530-2
  • Yin YH, Liu JYW, Välimäki M. Effectiveness of non-pharmacological interventions on the management of sarcopenic obesity: a systematic review and meta-analysis. Exp Gerontol. 2020 Jul 1;135:110937. doi: 10.1016/j.exger.2020.110937
  • Alizadeh Pahlavani H. Exercise therapy for people with sarcopenic obesity: Myokines and adipokines as effective actors. Front Endocrinol. 2022;13:811751. doi: 10.3389/fendo.2022.811751
  • Guo A, Li K, Xiao Q. Sarcopenic obesity: Myokines as potential diagnostic biomarkers and therapeutic targets? Exp Gerontol. 2020 Oct 1;139:111022. doi: 10.1016/j.exger.2020.111022
  • Ryu JY, Choi HM, Yang HI, et al. Dysregulated autophagy mediates sarcopenic obesity and its complications via AMPK and PGC1α signaling pathways: potential involvement of gut dysbiosis as a pathological link. Int J Mol Sci. 2020 Sep 19;21(18):6887. doi: 10.3390/ijms21186887
  • Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev. 2017 May;35:200–221. doi: 10.1016/j.arr.2016.09.008
  • McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology. 2018 Dec;19(6):519–536. doi: 10.1007/s10522-018-9775-3
  • Tallis J, James RS, Little AG, et al. Early effects of ageing on the mechanical performance of isolated locomotory (EDL) and respiratory (diaphragm) skeletal muscle using the work-loop technique. Am J Physiol Regul Integr Comp Physiol. 2014 Sep 15;307(6):R670–84. doi: 10.1152/ajpregu.00115.2014
  • Renganathan M, Messi ML, Delbono O. Dihydropyridine receptor-ryanodine receptor uncoupling in aged skeletal muscle. J Membr Biol. 1997 Jun 1;157(3):247–253. doi: 10.1007/s002329900233
  • Delrio-Lorenzo A, Rojo-Ruiz J, Alonso MT, et al. Sarcoplasmic reticulum Ca2+ decreases with age and correlates with the decline in muscle function in Drosophila. J Cell Sci. 2020 2020-Jan-1;133(6):jcs240879. doi: 10.1242/jcs.240879
  • Sun N, Youle RJ, Finkel T. The Mitochondrial basis of Aging. Mol Cell. 2016 Mar 3;61(5):654–666. doi: 10.1016/j.molcel.2016.01.028
  • Brack AS, Muñoz-Cánoves P. The ins and outs of muscle stem cell aging. Skelet Muscle. 2016;6(1):1. doi: 10.1186/s13395-016-0072-z
  • Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia. Front Aging Neurosci. 2014;6:246. doi: 10.3389/fnagi.2014.00246
  • Hill C, James RS, Cox VM, et al. The Effect of increasing age on the concentric and eccentric contractile properties of isolated mouse soleus and extensor digitorum longus muscles. J Gerontol A Biol Sci Med Sci. 2018 Apr 17;73(5):579–587. doi: 10.1093/gerona/glx243
  • Hill C, James RS, Cox VM, et al. Age-related changes in isolated mouse skeletal muscle function are dependent on sex, muscle, and contractility mode. Am J Physiol Regul Integr Comp Physiol. 2020 Sep 1;319(3):R296–R314. doi: 10.1152/ajpregu.00073.2020
  • Metter EJ, Conwit R, Tobin J, et al. Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol A Biol Sci Med Sci. 1997 Sep;52(5):B267–76. doi: 10.1093/gerona/52A.5.B267
  • Foldvari M, Clark M, Laviolette LC, et al. Association of muscle power with functional status in community-dwelling elderly women. J Gerontol A Biol Sci Med Sci. 2000 Apr;55(4):M192–9. doi: 10.1093/gerona/55.4.M192
  • Raj IS, Bird SR, Shield AJ. Aging and the force-velocity relationship of muscles. Exp Gerontol. 2010 Feb;45(2):81–90. doi: 10.1016/j.exger.2009.10.013
  • Degens H. Chapter 19 - Human Ageing: Impact on Muscle Force and Power. In: Jerzy AZ, editor. Muscle and Exercise Physiology. Amsterdam (The Netherlands): Academic Press; 2019. p. 423–432. doi: 10.1016/B978-0-12-814593-7.00019-0
  • Murton AJ, Marimuthu K, Mallinson JE, et al. Obesity appears to be associated with altered muscle protein synthetic and breakdown responses to increased Nutrient delivery in older men, but not reduced muscle mass or contractile function. Diabetes. 2015 Sep;64(9):3160–3171. doi: 10.2337/db15-0021
  • Dalle S, Rossmeislova L, Koppo K. The role of inflammation in age-related sarcopenia. Front Physiol. 2017;8:1045. doi: 10.3389/fphys.2017.01045
  • Ellulu MS, Patimah I, Khaza’ai H, et al. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017 Jun;13(4):851–863. doi: 10.5114/aoms.2016.58928
  • Erskine RM, Tomlinson DJ, Morse CI, et al. The individual and combined effects of obesity- and ageing-induced systemic inflammation on human skeletal muscle properties. Int J Obes (Lond). 2017 Jan;41(1):102–111. doi: 10.1038/ijo.2016.151
  • Guillet C, Masgrau A, Walrand S, et al. Impaired protein metabolism: interlinks between obesity, insulin resistance and inflammation. Obes Rev. 2012 Dec;13(Suppl 2):51–57. doi: 10.1111/j.1467-789X.2012.01037.x
  • Haran PH, Rivas DA, Fielding RA. Role and potential mechanisms of anabolic resistance in sarcopenia. J Cachexia Sarcopenia Muscle. 2012 Sep;3(3):157–162. doi: 10.1007/s13539-012-0068-4
  • Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone. 2015 Nov;80:131–142. doi: 10.1016/j.bone.2015.03.015
  • Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011 Jun;121(6):2111–2117. doi: 10.1172/JCI57132
  • Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010;2010:1–10. doi: 10.1155/2010/289645
  • Rodríguez-Hernández H, Simental-Mendía LE, Rodríguez-Ramírez G, et al. Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. Int J Endocrinol. 2013;2013:678159. doi: 10.1155/2013/678159
  • Katsanos CS, Mandarino LJ. Protein metabolism in human obesity: a shift in focus from whole-body to skeletal muscle. Obesity (Silver Spring). 2011 Mar;19(3):469–475. doi: 10.1038/oby.2010.290
  • Castro AM, Macedo-de la Concha LE, Pantoja-Meléndez CA. Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Revista Médica del Hospital General de México. 2017;80(2):101–105.
  • Phillips SM, Tang JE, Moore DR. The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J Am Coll Nutr. 2009 Aug;28(4):343–354. doi: 10.1080/07315724.2009.10718096
  • Heo JW, Yoo SZ, No MH, et al. Exercise training Attenuates obesity-induced skeletal muscle remodeling and mitochondria-mediated apoptosis in the skeletal muscle. Int J Environ Res Public Health. 2018 Oct 19;15(10):2301. doi: 10.3390/ijerph15102301
  • Bilski J, Pierzchalski P, Szczepanik M, et al. Multifactorial mechanism of sarcopenia and sarcopenic obesity. Role of physical exercise, microbiota and myokines. Cells. 2022 Jan 4;11(1):160. doi: 10.3390/cells11010160
  • Brioche T, Pagano AF, Py G, et al. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med. 2016 Aug;50:56–87.
  • Abizanda P, Romero L, Sánchez-Jurado PM, et al. Energetics of Aging and frailty: the FRADEA study. J Gerontol A Biol Sci Med Sci. 2016 Jun;71(6):787–796. doi: 10.1093/gerona/glv182
  • Wang Y, Wang X, Lau WB, et al. Adiponectin inhibits tumor necrosis factor-alpha-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circ Res. 2014 Feb 28;114(5):792–805. doi: 10.1161/CIRCRESAHA.114.302439
  • ! INVALID CITATION! [139].
  • Sugihara H, Teramoto N, Nakamura K, et al. Cellular senescence-mediated exacerbation of duchenne muscular dystrophy. Sci Rep. 2020 2020-Oct-12;10(1). Doi:10.1038/s41598-020-73315-6
  • Da Silva PFL, Ogrodnik M, Kucheryavenko O, et al. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell. 2019 2019-Feb-1;18(1):e12848. doi: 10.1111/acel.12848
  • Wan M, Gray-Gaillard EF, Elisseeff JH. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res. 2021 2021-Sep-10;9(1). doi: 10.1038/s41413-021-00164-y
  • Kawakami M, Murase T, Ogawa H, et al. Human recombinant TNF suppresses lipoprotein lipase activity and stimulates lipolysis in 3T3-L1 cells. J Biochem. 1987 Feb;101(2):331–338. doi: 10.1093/oxfordjournals.jbchem.a121917
  • Leduc-Gaudet J-P, Hussain SNA, Barreiro E, et al. Mitochondrial dynamics and Mitophagy in skeletal muscle health and Aging. Int J Mol Sci. 2021 2021-Jul-30;22(15):8179. doi: 10.3390/ijms22158179
  • Leduc-Gaudet J-P, Picard M, Pelletier F-J, et al. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget. 2015 2015-Jul-20;6(20):17923–17937. doi: 10.18632/oncotarget.4235
  • Laforge M, Rodrigues V, Silvestre R, et al. NF-κB pathway controls mitochondrial dynamics. Cell Death Diff. 2016 2016-Jan-1;23(1):89–98. doi: 10.1038/cdd.2015.42
  • Montarras D, L’Honoré A, Buckingham M. Lying low but ready for action: the quiescent muscle satellite cell.FEBS J. 2013 2013-Sep-1;280(17):4036–4050. doi: 10.1111/febs.12372
  • Sousa-Victor P, Gutarra S, García-Prat L, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014 2014-Feb-1;506(7488):316–321. doi: 10.1038/nature13013
  • Li CW, Yu K, Shyh‐Chang N, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle. 2022 2022-Apr-1;13(2):781–794. doi: 10.1002/jcsm.12901
  • Samengo G, Avik A, Fedor B, et al. Age-related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain S-nitrosylation that increase myofibril degradation and sarcopenia. Aging Cell. 2012 Dec;11(6):1036–1045. doi: 10.1111/acel.12003
  • Bjornson CR, Cheung TH, Liu L, et al. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells. 2012 Feb;30(2):232–242. doi: 10.1002/stem.773
  • Orentreich N, Brind JL, Rizer RL, et al. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab. 1984 Sep;59(3):551–555. doi: 10.1210/jcem-59-3-551
  • Nafziger AN, Bowlin SJ, Jenkins PL, et al. Longitudinal changes in dehydroepiandrosterone concentrations in men and women. J Lab Clin Med. 1998 Apr;131(4):316–323. doi: 10.1016/S0022-2143(98)90181-0
  • Colleluori G, Napoli N, Phadnis U, et al. Effect of weight loss, exercise, or both on Undercarboxylated Osteocalcin and insulin secretion in Frail, obese older adults. Oxid Med Cell Longevity. 2017 2017-Jan-1;2017:1–12.
  • Kang SY, Lim GE, Kim YK, et al. Association between sarcopenic obesity and metabolic syndrome in postmenopausal women: a cross-sectional study based on the Korean national health and nutritional examination surveys from 2008 to 2011. J Bone Metab. 2017 Feb;24(1):9–14. doi: 10.11005/jbm.2017.24.1.9
  • Gambacciani M, Ciaponi M, Cappagli B, et al. Prospective evaluation of body weight and body fat distribution in early postmenopausal women with and without hormonal replacement therapy. Maturitas. 2001 Aug 25;39(2):125–132. doi: 10.1016/S0378-5122(01)00194-3
  • Enns DL, Tiidus PM. The influence of estrogen on skeletal muscle: sex matters. Sports Med. 2010 Jan 1;40(1):41–58. doi: 10.2165/11319760-000000000-00000
  • Yeap BB. Are declining testosterone levels a major risk factor for ill-health in aging men? Int J Impot Res. 2009;21(1):24–36. doi: 10.1038/ijir.2008.60
  • Ketchem JM, Bowman EJ, Isales CM. Male sex hormones, aging, and inflammation. Biogerontology. 2023 Feb;24(1):1–25. doi: 10.1007/s10522-022-10002-1
  • Brodsky IG, Balagopal P, Nair KS. Effects of testosterone replacement on muscle mass and muscle protein synthesis in hypogonadal men–a clinical research center study. J Clin Endocrinol Metab. 1996 Oct;81(10):3469–3475. doi: 10.1210/jcem.81.10.8855787
  • Pronsato L, Milanesi L, Vasconsuelo A. Testosterone induces up-regulation of mitochondrial gene expression in murine C2C12 skeletal muscle cells accompanied by an increase of nuclear respiratory factor-1 and its downstream effectors. Mol Cell Endocrinol. 2020 Jan 15;500:110631. doi: 10.1016/j.mce.2019.110631
  • LeBlanc ES, Wang PY, Lee CG, et al. Higher testosterone levels are associated with less loss of lean body mass in older men. J Clin Endocrinol Metab. 2011 Dec;96(12):3855–3863. doi: 10.1210/jc.2011-0312
  • Miller KK. Androgen deficiency: effects on body composition. Pituitary. 2009;12(2):116–124. doi: 10.1007/s11102-008-0121-7
  • Isidori AM, Giannetta E, Greco EA, et al. Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin Endocrinol (Oxf). 2005 Sep;63(3):280–293. doi: 10.1111/j.1365-2265.2005.02339.x
  • Bhasin S, Woodhouse L, Casaburi R, et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab. 2005 Feb;90(2):678–688. doi: 10.1210/jc.2004-1184
  • Snyder PJ, Peachey H, Hannoush P, et al. Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J Clin Endocrinol Metab. 1999 Aug;84(8):2647–2653. doi: 10.1210/jc.84.8.2647
  • Ferrando AA, Sheffield-Moore M, Yeckel CW, et al. Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. Am J Physiol Endocrinol Metab. 2002 Mar;282(3):E601–7. doi: 10.1152/ajpendo.00362.2001
  • Snyder PJ, Bhasin S, Cunningham GR, et al. Effects of testosterone treatment in older men. N Engl J Med. 2016 Feb 18;374(7):611–624. doi: 10.1056/NEJMoa1506119
  • Bhasin S, Travison TG, Storer TW, et al. Effect of testosterone supplementation with and without a dual 5α-reductase inhibitor on fat-free mass in men with suppressed testosterone production: a randomized controlled trial. JAMA. 2012 Mar 7;307(9):931–939. doi: 10.1001/jama.2012.227
  • Correa C, Bieger P, Perry IS, et al. Testosterone supplementation on sarcopenia components in chronic patients: a systematic review and meta-analysis. Curr Pharm Des. 2022;28(7):586–594. doi: 10.2174/1381612827666211115155541
  • Rolland Y, Czerwinski S, Abellan Van Kan G, et al. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging. 2008;12(7):433–450. doi: 10.1007/BF02982704
  • Weinsier RL, Schutz Y, Bracco D. Reexamination of the relationship of resting metabolic rate to fat-free mass and to the metabolically active components of fat-free mass in humans. Am J Clin Nutr. 1992 Apr;55(4):790–794. doi: 10.1093/ajcn/55.4.790
  • Lettieri-Barbato D, Aquilano K. Aging and immunometabolic adaptations to thermogenesis. Ageing Res Rev. 2020 Nov;63:101143. doi: 10.1016/j.arr.2020.101143
  • Cannon B, Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol. 2011 Jan 15;214(Pt 2):242–253. doi: 10.1242/jeb.050989
  • Dulloo AG, Seydoux J, Jacquet J. Adaptive thermogenesis and uncoupling proteins: a reappraisal of their roles in fat metabolism and energy balance. Physiol Behav. 2004 Dec 30;83(4):587–602. doi: 10.1016/j.physbeh.2004.07.028
  • Doucet E, Imbeault P, St-Pierre S, et al. Appetite after weight loss by energy restriction and a low-fat diet-exercise follow-up. Int J Obes Relat Metab Disord. 2000 Jul;24(7):906–914. doi: 10.1038/sj.ijo.0801251
  • Doucet E, St Pierre S, Alméras N, et al. Changes in energy expenditure and substrate oxidation resulting from weight loss in obese men and women: is there an important contribution of leptin? J Clin Endocrinol Metab. 2000 Apr;85(4):1550–1556. doi: 10.1210/jc.85.4.1550
  • Bray GA. Effect of caloric restriction on energy expenditure in obese patients. Lancet. 1969 Aug 23;2(7617):397–398. doi: 10.1016/S0140-6736(69)90109-3
  • Major GC, Doucet E, Trayhurn P, et al. Clinical significance of adaptive thermogenesis. Int J Obes (Lond). 2007 Feb;31(2):204–212. doi: 10.1038/sj.ijo.0803523
  • Rosenbaum M, Hirsch J, Gallagher DA, et al. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr. 2008 Oct;88(4):906–912. doi: 10.1093/ajcn/88.4.906
  • Tremblay A, Royer MM, Chaput JP, et al. Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight. Int J Obes (Lond). 2013 Jun;37(6):759–764. doi: 10.1038/ijo.2012.124
  • Astrup A, Gøtzsche PC, van de Werken K, et al. Meta-analysis of resting metabolic rate in formerly obese subjects. Am J Clin Nutr. 1999 Jun;69(6):1117–1122. doi: 10.1093/ajcn/69.6.1117
  • Roth SM, Martel GF, Ivey FM, et al. Ultrastructural muscle damage in young vs. older men after high-volume, heavy-resistance strength training. J Appl Physiol (1985). 1999 Jun;86(6):1833–1840. doi: 10.1152/jappl.1999.86.6.1833
  • Klem ML, Wing RR, Lang W, et al. Does weight loss maintenance become easier over time? Obes Res. 2000 Sep;8(6):438–444. doi: 10.1038/oby.2000.54
  • Wing RR, Hill JO. Successful weight loss maintenance. Annu Rev Nutr. 2001;21(1):323–341. doi: 10.1146/annurev.nutr.21.1.323
  • Scott D, Cumming R, Naganathan V, et al. Associations of sarcopenic obesity with the metabolic syndrome and insulin resistance over five years in older men: the Concord health and ageing in men project. Exp Gerontol. 2018 2018-Jul-1;108:99–105.
  • Stefan N, Schick F, Birkenfeld AL, et al. The role of hepatokines in NAFLD. Cell Metab. 2023 Feb 7;35(2):236–252. doi: 10.1016/j.cmet.2023.01.006
  • Justice JN, Ferrucci L, Newman AB, et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME biomarkers Workgroup. Geroscience. 2018 12;40(5–6):419–436. doi: 10.1007/s11357-018-0042-y
  • Semenova EA, Pranckeviciene E, Bondareva EA, et al. Identification and characterization of genomic predictors of sarcopenia and sarcopenic obesity using UK Biobank data. Nutrients. 2023 Feb 2;15(3):758. doi: 10.3390/nu15030758
  • Dowling L, Duseja A, Vilaca T, et al. MicroRNAs in obesity, sarcopenia, and commonalities for sarcopenic obesity: a systematic review. J Cachexia Sarcopenia Muscle. 2022 Feb;13(1):68–85. doi: 10.1002/jcsm.12878
  • Stefan N, Schulze MB. Metabolic health and cardiometabolic risk clusters: implications for prediction, prevention, and treatment. Lancet Diabetes Endocrinol. 2023 Jun;11(6):426–440. doi: 10.1016/S2213-8587(23)00086-4
  • Poggiogalle E, Migliaccio S, Lenzi A, et al. Treatment of body composition changes in obese and overweight older adults: insight into the phenotype of sarcopenic obesity. Endocrine. 2014 2014-Dec-1;47(3):699–716. doi: 10.1007/s12020-014-0315-x
  • Poggiogalle E, Parrinello E, Barazzoni R, et al. Therapeutic strategies for sarcopenic obesity: a systematic review. Curr Opin Clin Nutr Metab Care. 2021 Jan;24(1):33–41. doi: 10.1097/MCO.0000000000000714
  • Melson E, Miras AD, Papamargaritis D. Future therapies for obesity. Clin Med. 2023 Jul;23(4):337–346. doi: 10.7861/clinmed.2023-0144
  • Heymsfield SB, Coleman LA, Miller R, et al. Effect of bimagrumab vs Placebo on body fat mass among adults with type 2 Diabetes and obesity: a Phase 2 randomized clinical trial. JAMA Netw Open. 2021 Jan 4;4(1):e2033457. doi: 10.1001/jamanetworkopen.2020.33457

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.