110
Views
0
CrossRef citations to date
0
Altmetric
Review

The environmental burden on endocrine neoplasia: a review on the documented impact of endocrine disrupting chemicals

ORCID Icon & ORCID Icon
Pages 513-524 | Received 11 Mar 2023, Accepted 04 Oct 2023, Published online: 16 Oct 2023

References

  • Zoeller RT, Brown TR, Doan LL, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from the endocrine Society. Endocrinology. 2012;153(9):4097–4110. doi: 10.1210/en.2012-1422
  • Lauretta R, Sansone A, Sansone M. Endocrine disrupting chemicals: effects on endocrine glands. Front Endocrinol. 2019;10:178. doi: 10.3389/fendo.2019.00178
  • Global assessment on the state of the science of endocrine disruptors [Internet]. World Health Organization. 2002 [cited 2023 Jul 28]. Available from: https://apps.who.int/iris/handle/10665/67357
  • Substances identified as endocrine disruptors at EU level | endocrine disruptor list [Internet]. [cited 2023 Jul 28]. Available from: https://edlists.org/the-ed-lists/list-i-substances-identified-as-endocrine-disruptors-by-the-eu
  • Substances under evaluation for endocrine disruption under an EU legislation | endocrine disruptor list [Internet]. [cited 2023 Jul 28]. Available from: https://edlists.org/the-ed-lists/list-ii-substances-under-eu-investigation-endocrine-disruption
  • Substances considered, by the evaluating national authority, to have endocrine disrupting properties | endocrine disruptor list [Internet]. [cited 2023 Jul 28]. Available from: https://edlists.org/the-ed-lists/list-iii-substances-identified-as-endocrine-disruptors-by-participating-national-authorities
  • Modica R, Benevento E, Colao A. Endocrine-disrupting chemicals (EDCs) and cancer: new perspectives on an old relationship. J Endocrinol Invest. 2023;46(4):667–377. doi: 10.1007/s40618-022-01983-4
  • Moher D, Shamseer L, Clarke M, et al.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi: 10.1186/2046-4053-4-1
  • Gruppetta M, Vassallo J. Epidemiology and radiological geometric assessment of pituitary macroadenomas: population‐based study. Clinical Endocrinol. 2016 Aug;85(2):223–231. doi: 10.1111/cen.13064
  • Daly AF, Beckers A. The epidemiology of pituitary adenomas. Endocrinol Metab Clin North Am. 2020;49(3):347–355. doi: 10.1016/j.ecl.2020.04.002
  • Pesatori AC, Baccarelli A, Consonni D, et al. Aryl hydrocarbon receptor-interacting protein and pituitary adenomas: a population-based study on subjects exposed to dioxin after the Seveso, Italy, accident. Eur J Endocrinol. 2008;159(6):699–703. doi: 10.1530/EJE-08-0593
  • Cannavò S, Ferraù F, Ragonese M, et al. Increased prevalence of acromegaly in a highly polluted area. Eur J Endocrinol. 2010;163(4):509–513. doi: 10.1530/EJE-10-0465
  • Cannavo S, Ragonese M, Puglisi S, et al. Acromegaly is more severe in patients with AHR or AIP gene variants living in highly polluted areas. J Clin Endocrinol Metab. 2016;101(4):1872–1879. doi: 10.1210/jc.2015-4191
  • Tapella L, Sesta A, Cassarino MF. Benzene and 2-ethyl-phthalate induce proliferation in normal rat pituitary cells. Pituitary. 2017;20(3):311–318. doi: 10.1007/s11102-016-0777-3
  • Fortunati N, Guaraldi F, Zunino V, et al. Effects of environmental pollutants on signaling pathways in rat pituitary GH3 adenoma cells. Environ Res. 2017;158:660–668. doi: 10.1016/j.envres.2017.07.015
  • Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011;127(1–2):27–34. doi: 10.1016/j.jsbmb.2011.05.002
  • Hao L, Zhang J, Zhang Y, et al. Effect of bisphenol a on occurrence and progression of prolactinoma and its underlying mechanisms. Am J Transl Res. 2016;8(10):4195–4204.
  • Steinmetz R, Brown NG, Allen DL. The environmental estrogen bisphenol a stimulates prolactin release in vitro and in vivo. Endocrinology. 1997;138(5):1780–1786. doi: 10.1210/endo.138.5.5132
  • Cossette LJ, Gaumond I, Martinoli MG. Combined effect of xenoestrogens and growth factors in two estrogen-responsive cell lines. Endocrine. 2002;18(3):303–308. doi: 10.1385/ENDO:18:3:303
  • Fujimoto N, Honda H. Effects of environmental estrogenic compounds on growth of a transplanted estrogen responsive pituitary tumor cell line in rats. Food Chem Toxicol. 2003 Dec;41(12):1711–1717. doi: 10.1016/s0278-6915(03)00198-4
  • Viñas R, Watson CS. Mixtures of xenoestrogens disrupt estradiol-induced non-genomic signaling and downstream functions in pituitary cells. Environ Health. 2013;12(1):26. doi: 10.1186/1476-069X-12-26
  • Ronchetti SA, Miler EA, Duvilanski BH. Cadmium mimics estrogen-driven cell proliferation and prolactin secretion from anterior pituitary cells. PLoS One. 2013;8(11):e81101. doi: 10.1371/journal.pone.0081101
  • Preston DL, Ron E, Yonehara S, et al. Tumors of the nervous system and pituitary gland associated with atomic bomb radiation exposure. J Natl Cancer Inst. 2002;94(20):1555–1563. doi: 10.1093/jnci/94.20.1555
  • Nguyen QT, Lee EJ, Huang MG, et al. Diagnosis and treatment of patients with thyroid cancer. Am Health Drug Benefits. 2015;8(1):30–40.
  • Vigneri R, Malandrino P, Gianì F, et al. Heavy metals in the volcanic environment and thyroid cancer. Mol Cell Endocrinol. 2017;457:73–80. doi: 10.1016/j.mce.2016.10.027
  • Gianì F, Masto R, Trovato MA, et al. Heavy metals in the environment and thyroid cancer. Cancers (Basel). 2021;13(16):4052. doi: 10.3390/cancers13164052
  • Davis S, Stepanenko V, Rivkind N, et al. Risk of thyroid cancer in the Bryansk Oblast of the Russian Federation after the Chernobyl power station accident. Radiat Res. 2004;162(3):241–248. doi: 10.1667/rr3233
  • Mahoney MC, Lawvere S, Falkner KL, et al. Thyroid cancer incidence trends in Belarus: examining the impact of Chernobyl. Int J Epidemiol. 2004;33(5):1025–1033. doi: 10.1093/ije/dyh201
  • Cardis E, Kesminiene A, Ivanov V, et al. Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst. 2005;97(10):724–732. doi: 10.1093/jnci/dji129
  • Fuzik M, Prysyazhnyuk A, Shibata Y, et al. Thyroid cancer incidence in Ukraine: trends with reference to the Chernobyl accident. Radiat Environ Biophys. 2011;50(1):47–55. doi: 10.1007/s00411-010-0340-y
  • Zablotska LB, Ron E, Rozhko AV, et al. Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident. Br J Cancer. 2011;104(1):181–187. doi: 10.1038/sj.bjc.6605967
  • Ory C, Leboulleux S, Salvatore D, et al. Consequences of atmospheric contamination by radioiodine: the Chernobyl and Fukushima accidents. Endocrine. 2021;71(2):298–309. doi: 10.1007/s12020-020-02498-9
  • Nikiforov YE. Radiation-induced thyroid cancer: what we have learned from chernobyl. Endocr Pathol. 2006;17(4):307–317. doi: 10.1007/s12022-006-0001-5
  • Benedetti M, Zona A, Contiero P, . Incidence of thyroid cancer in Italian contaminated sites. Ijerph. 2020;18(1):191. doi: 10.3390/ijerph18010191
  • Fei X, Chen W, Zhang S. The spatio-temporal distribution and risk factors of thyroid cancer during rapid urbanization - a case study in China. Sci Total Environ. 2018;630:1436–1445.
  • Arias-Ortiz NE, Icaza-Noguera G, Ruiz-Rudolph P. Thyroid cancer incidence in women and proximity to industrial air pollution sources: a spatial analysis in a middle size city in Colombia. Atmos Pollut Res. 2017;9(3):464–475. doi: 10.1016/j.apr.2017.11.003
  • Lope V, Pérez-Gómez B, Aragonés N, et al. Occupational exposure to chemicals and risk of thyroid cancer in Sweden. Int Arch Occup Environ Health. 2009;82(2):267–274. doi: 10.1007/s00420-008-0314-4
  • Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect. 2013;121(11–12):1313–1318. doi: 10.1289/ehp.1306615
  • Kim S, Park E, Song SH, et al. Toluene concentrations in the blood and risk of thyroid cancer among residents living near national industrial complexes in South Korea: a population-based cohort study. Environ Int. 2021;146:106304. doi: 10.1016/j.envint.2020.106304
  • Pellegriti G, De Vathaire F, Scollo C, et al. Papillary thyroid cancer incidence in the volcanic area of Sicily. J Natl Cancer Inst. 2009;101(22):1575–1583. doi: 10.1093/jnci/djp354
  • Malandrino P, Russo M, Ronchi A, et al. Increased thyroid cancer incidence in a basaltic volcanic area is associated with non-anthropogenic pollution and biocontamination. Endocrine. 2016;53(2):471–479. doi: 10.1007/s12020-015-0761-0
  • Varrica D, Tamburo E, Dongarrà G, et al. Trace elements in scalp hair of children chronically exposed to volcanic activity (mt. Etna, Italy). Sci Total Environ. 2014;470-471:117–126. doi: 10.1016/j.scitotenv.2013.09.058
  • Rezaei M, Javadmoosavi SY, Mansouri B, et al. Thyroid dysfunction: how concentration of toxic and essential elements contribute to risk of hypothyroidism, hyperthyroidism, and thyroid cancer. Environ Sci Pollut Res Int. 2019;26(35):35787–35796. doi: 10.1007/s11356-019-06632-7
  • Zhang C, Wu HB, Cheng MX, et al. Association of exposure to multiple metals with papillary thyroid cancer risk in China. Environ Sci Pollut Res Int. 2019;26(20):20560–20572. doi: 10.1007/s11356-019-04733-x
  • Bibi K, Shah MH. Appraisal of metal imbalances in the blood of thyroid cancer patients in comparison with healthy subjects. Biol Trace Elem Res. 2020;198(2):410–422. doi: 10.1007/s12011-020-02088-w
  • Chung HK, Nam JS, Ahn CW, et al. Some elements in thyroid tissue are associated with more advanced stage of thyroid cancer in Korean women. Biol Trace Elem Res. 2016;171(1):54–62. doi: 10.1007/s12011-015-0502-5
  • Gianì F, Masto R, Trovato MA, et al. Thyroid stem cells but not differentiated thyrocytes are sensitive to slightly increased concentrations of heavy metals. Front Endocrinol. 2021;12:652675. doi: 10.3389/fendo.2021.652675
  • Gianì F, Pandini G, Scalisi NM, et al. Effect of low-dose tungsten on human thyroid stem/precursor cells and their progeny. Endocr Relat Cancer. 2019;26(8):713–725. doi: 10.1530/ERC-19-0176
  • Maggisano V, Bulotta S, Celano M, et al. Low doses of methylmercury induce the proliferation of thyroid cells in vitro through modulation of ERK Pathway. Int J Mol Sci. 2020;21(5):1556. doi: 10.3390/ijms21051556
  • Luca E, Fici L, Ronchi A, et al. Intake of boron, cadmium, and molybdenum enhances rat thyroid cell transformation. J Exp Clin Cancer Res. 2017;36(1):73. doi: 10.1186/s13046-017-0543-z
  • Marotta V, Russo G, Gambardella C, et al. Human exposure to bisphenol AF and diethylhexylphthalate increases susceptibility to develop differentiated thyroid cancer in patients with thyroid nodules. Chemosphere. 2019;218:885–894. doi: 10.1016/j.chemosphere.2018.11.084
  • Liu C, Deng YL, Zheng TZ, et al. Urinary biomarkers of phthalates exposure and risks of thyroid cancer and benign nodule. J Hazard Mater. 2020;383:121189. doi: 10.1016/j.jhazmat.2019.121189
  • Miao H, Liu X, Li J, et al. Associations of urinary phthalate metabolites with risk of papillary thyroid cancer. Chemosphere. 2020;241:125093. doi: 10.1016/j.chemosphere.2019.125093
  • Zhang J, Zhang X, Li Y, et al. Low dose of bisphenol a enhance the susceptibility of thyroid carcinoma stimulated by DHPN and iodine excess in F344 rats. Oncotarget. 2017;8(41):69874–69887. doi: 10.18632/oncotarget.19434
  • Wang L, Guo M, Feng G. Effects of chronic exposure to nonylphenol at environmental concentration on thyroid function and thyroid hyperplasia disease in male rats. Toxicology. 2021;461:152918. doi: 10.1016/j.tox.2021.152918
  • Yang WJ, Wu HB, Zhang C, et al. Exposure to 2,4-dichlorophenol, 2,4,6-trichlorophenol, pentachlorophenol and risk of thyroid cancer: a case-control study in China. Environ Sci Pollut Res Int. 2021;28(43):61329–61343. doi: 10.1007/s11356-021-14898-z
  • Hoffman K, Lorenzo A, Butt CM, et al. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: a case-control study. Environ Int. 2017;107:235–242. doi: 10.1016/j.envint.2017.06.021
  • Huang H, Sjodin A, Chen Y, et al. Polybrominated diphenyl ethers, polybrominated biphenyls, and risk of papillary thyroid cancer: a nested case-control study. Am J Epidemiol. 2020;189(2):120–132. doi: 10.1093/aje/kwz229
  • Lerro CC, Beane Freeman LE, DellaValle CT, et al. Pesticide exposure and incident thyroid cancer among male pesticide applicators in agricultural health study. Environ Int. 2021;146:106187. doi: 10.1016/j.envint.2020.106187
  • Lerro CC, Koutros S, Andreotti G, et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the agricultural Health study. Occup Environ Med. 2015;72(10):736–744. doi: 10.1136/oemed-2014-102798
  • Freeman LE, Rusiecki JA, Hoppin JA, et al. Atrazine and cancer incidence among pesticide applicators in the agricultural health study (1994-2007). Environ Health Perspect. 2011;119(9):1253–1259. doi: 10.1289/ehp.1103561
  • Deziel NC, Warren JL, Huang H, et al. Exposure to polychlorinated biphenyls and organochlorine pesticides and thyroid cancer in connecticut women. Environ Res. 2021;192:110333. doi: 10.1016/j.envres.2020.110333
  • Lerro CC, Jones RR, Langseth H, et al. A nested case-control study of polychlorinated biphenyls, organochlorine pesticides, and thyroid cancer in the Janus serum Bank cohort. Environ Res. 2018;165:125–132. doi: 10.1016/j.envres.2018.04.012
  • Ward MH, Kilfoy BA, Weyer PJ, et al. Nitrate intake and the risk of thyroid cancer and thyroid disease. Epidemiology. 2010;21(3):389–395. doi: 10.1097/EDE.0b013e3181d6201d
  • Kilfoy BA, Zhang Y, Park Y, et al. Dietary nitrate and nitrite and the risk of thyroid cancer in the NIH-AARP diet and Health study. Int J Cancer. 2011;129(1):160–172. doi: 10.1002/ijc.25650
  • Tariqi AQ, Naughton CC. Water, Health, and environmental justice in California: geospatial analysis of nitrate contamination and thyroid cancer. Environ Eng Sci. 2021;38(5):377–388. doi: 10.1089/ees.2020.0315
  • Kim J, Bang Y, Lee WJ. Living near nuclear power plants and thyroid cancer risk: a systematic review and meta-analysis. Environ Int. 2016;87:42–48. doi: 10.1016/j.envint.2015.11.006
  • Fama F, Sindoni A, Cicciu M. Preoperatively undiagnosed papillary thyroid carcinoma in patients thyroidectomized for benign multinodular goiter. Arch Endocrinol Metab. 2018;62(2):139–148. doi: 10.20945/2359-3997000000017
  • Liu M, Zhang G, Meng L, et al. Associations between novel and legacy per- and polyfluoroalkyl substances in human serum and thyroid cancer: a case and healthy population in Shandong province, East China. Environ Sci Technol. 2022;56(10):6144–6151. doi: 10.1021/acs.est.1c02850
  • Vieira VM, Hoffman K, Shin HM, et al. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environ Health Perspect. 2013;121(3):318–323. doi: 10.1289/ehp.1205829
  • Goodman MT, Yoshizawa CN, Kolonel LN. Descriptive epidemiology of thyroid cancer in Hawaii. Cancer. 1988;61(6):1272–1281. doi: 10.1002/1097-0142(19880315)61:6<1272:AID-CNCR2820610636>3.0.CO;2-8
  • Rossing MA, Schwartz SM, Weiss NS. Thyroid cancer incidence in Asian migrants to the United States and their descendants. Cancer Causes Control. 1995;6(5):439–444. doi: 10.1007/BF00052184
  • Paksoy N, Montaville B, McCarthy SW. Cancer occurrence in Vanuatu in the South Pacific, 1980-86. Trop Geogr Med. 1990;42(2):157–161.
  • Bray F, Colombet M, Mery L, et al. Cancer incidence in five continents vol. IX. IARC scientific publication no. 160. Lyon: IARC. 2021.
  • Truong T, Rougier Y, Dubourdieu D, et al. Time trends and geographic variations for thyroid cancer in New Caledonia, a very high incidence area (1985-1999). Eur J Cancer Prev. 2007;16(1):62–70. doi: 10.1097/01.cej.0000236244.32995.e1
  • Duntas LH, Doumas C. The ‘rings of fire’ and thyroid cancer. Hormones (Athens). 2009;8(4):249–253. doi: 10.14310/horm.2002.1242
  • Tavarelli M, Malandrino P, Vigneri P, et al. Anaplastic thyroid cancer in Sicily: the role of environmental characteristics. Front Endocrinol. 2017;8:277. doi: 10.3389/fendo.2017.00277
  • WHO (World Health Organization) Geneva. 2017. Guidelines for drinking-water quality. 4th ed. https://www.who.int/publications/i/item/9789241549950
  • Stapleton HM, Allen JG, Kelly SM, et al. Alternate and new brominated flame retardants detected in U.S. house dust. Environ Sci Technol. 2008;42(18):6910–6916. doi: 10.1021/es801070p
  • Johnson PI, Stapleton HM, Sjodin A, et al. Relationships between polybrominated diphenyl ether concentrations in house dust and serum. Environ Sci Technol. 2010;44(14):5627–5632. doi: 10.1021/es100697q
  • Hoffman K, Fang M, Horman B, et al. Urinary tetrabromobenzoic acid (TBBA) as a biomarker of exposure to the flame retardant mixture Firemaster® 550. Environ Health Perspect. 2014;122(9):963–969. doi: 10.1289/ehp.1308028
  • Hoffman K, Garantziotis S, Birnbaum LS, et al. Monitoring indoor exposure to organophosphate flame retardants: hand wipes and house dust. Environ Health Perspect. 2015;123(2):160–165. doi: 10.1289/ehp.1408669
  • Aschebrook-Kilfoy B, DellaValle CT, Purdue M, et al. Polybrominated diphenyl ethers and thyroid cancer risk in the prostate, colorectal, lung, and ovarian cancer screening trial cohort. Am J Epidemiol. 2015;181(11):883–888. doi: 10.1093/aje/kwu358
  • Deziel NC, Yi H, Stapleton HM, et al. A case-control study of exposure to organophosphate flame retardants and risk of thyroid cancer in women. BMC Cancer. 2018;18(1):637. doi: 10.1186/s12885-018-4553-9
  • Deziel NC, Alfonso-Garrido J, Warren JL, et al. Exposure to polybrominated diphenyl ethers and a polybrominated biphenyl and risk of thyroid cancer in women: single and multi-pollutant approaches. Cancer Epidemiol Biomarkers Prev. 2019;28(10):1755–1764. doi: 10.1158/1055-9965.EPI-19-0526
  • Pelletier C, Imbeault P, Tremblay A. Energy balance and pollution by organochlorines and polychlorinated biphenyls. Obes Rev. 2003;4(1):17–24. doi: 10.1046/j.1467-789x.2003.00085.x
  • Grimalt JO, Sunyer J, Moreno V, et al. Risk excess of soft-tissue sarcoma and thyroid cancer in a community exposed to airborne organochlorinated compound mixtures with a high hexachlorobenzene content. Int J Cancer. 1994;56(2):200–203. doi: 10.1002/ijc.2910560209
  • Pavuk M, Cerhan JR, Lynch CF, et al. Environmental exposure to PCBs and cancer incidence in eastern Slovakia. Chemosphere. 2004;54(10):1509–1520. doi: 10.1016/j.chemosphere.2003.10.038
  • Haslam A, Robb SW, Bonner MR, et al. Polychlorinated biphenyls and omega-3 fatty acid exposure from fish consumption, and thyroid cancer among New York anglers. J Environ Sci. 2016;41:270–277. doi: 10.1016/j.jes.2015.05.004
  • Guan H, Ji M, Bao R, et al. Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. 2009;94(5):1612–1617. doi: 10.1210/jc.2008-2390
  • JACC Study Group, Wang C, Yatsuya H, Li Y, et al. Prospective study of seaweed consumption and thyroid cancer incidence in women: the Japan collaborative cohort study. Eur J Cancer Prev. 2016;25(3):239–245.
  • Lv C, Yang Y, Jiang L, et al. Association between chronic exposure to different water iodine and thyroid cancer: a retrospective study from 1995 to 2014. Sci Total Environ. 2017;609:735–741. doi: 10.1016/j.scitotenv.2017.07.101
  • Hinson JP, Raven PW. Effects of endocrine-disrupting chemicals on adrenal function. Best Pract Res Clin Endocrinol Metab. 2006;20(1):111–120. doi: 10.1016/j.beem.2005.09.006
  • Eker F, Gungunes A, Durmaz S, et al. Nonfunctional adrenal incidentalomas may be related to bisphenol-A. Endocrine. 2021;71(2):459–466. doi: 10.1007/s12020-020-02502-2
  • Fommei E, Turci R, Ripoli A. Evidence for persistent organochlorine pollutants in the human adrenal cortex. J Appl Toxicol. 2017;37(9):1091–1097. doi: 10.1002/jat.3460
  • Medwid S, Guan H, Yang K, . Prenatal exposure to bisphenol a disrupts adrenal steroidogenesis in adult mouse offspring. Environ Toxicol Pharmacol. 2016;43():203–208. doi: 10.1016/j.etap.2016.03.014
  • Jagodić J, Rovčanin B, Paunović I. The first insight into the trace element status of human adrenal gland accompanied by elemental alterations in adrenal adenomas. J Trace Elem Med Biol. 2021;63:126658. doi: 10.1016/j.jtemb.2020.126658
  • Jagodić J, Rovčanin B, Paunović I, et al. Elemental composition of pheochromocytoma resolved on solid/adrenal tissue and whole blood level. Biol Trace Elem Res. 2022;200:3482–3490. doi: 10.1007/s12011-021-02945-2
  • Hallet J, Law CH, Cukier M, et al. Exploring the rising incidence of neuroendocrine tumors: a population-based analysis of epidemiology, metastatic presentation, and outcomes. Cancer. 2015;121(4):589–597. doi: 10.1002/cncr.29099
  • Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97(4):934–959. doi: 10.1002/cncr.11105
  • Ellis L, Shale MJ, Coleman MP. Carcinoid tumors of the gastrointestinal tract: trends in incidence in England since 1971. Am J Gastroenterol. 2010;105(12):2563–2569. doi: 10.1038/ajg.2010.341
  • Dasari A, Shen C, Halperin D. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3(10):1335–1342. doi: 10.1001/jamaoncol.2017.0589
  • Hallet J, Law CH, Karanicolas PJ, et al. Rural-urban disparities in incidence and outcomes of neuroendocrine tumors: a population-based analysis of 6271 cases. Cancer. 2015;121(13):2214–2221. doi: 10.1002/cncr.29338
  • VanDerslice J, Taddie MC, Curtin K. Early life exposures associated with risk of small intestinal neuroendocrine tumors. PLoS One. 2020;15(4):e0231991. doi: 10.1371/journal.pone.0231991
  • Burgio E, Piscitelli P, Colao A, . Environmental carcinogenesis and transgenerational transmission of carcinogenic risk: from genetics to epigenetics. Int J Environ Res Public Health. 2018;15(8):1791. doi: 10.3390/ijerph15081791
  • Endocrine-disrupting Chemicals in the European Union. An endocrine Society position statement. Endocrine Society. 2018 [cited 2022 Jul 15]. Available from: https://www.endocrine.org/advocacy/position-statements/endocrine-disrupting-chemicals-in-the-european-union
  • What is Green Chemistry? [Internet]. American Chemical Society. [cited 2022 Jul 15]. Available from: https://www.acs.org/greenchemistry/what-is-green-chemistry.html#:~:text=Green%20chemistry%20takes%20the%20EPA%27s%20mandate%20a%20step,toxics%20and%20waste.%20Green%20Chemistry%20is%20not%20politics

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.