502
Views
22
CrossRef citations to date
0
Altmetric
Review

Tumor-like microenvironment in oral lichen planus: evidence of malignant transformation?

, , &
Pages 635-643 | Received 08 Dec 2016, Accepted 13 Feb 2017, Published online: 28 Feb 2017

References

  • Marable DR, Bowers LM, Stout TL, et al. Oral candidiasis following steroid therapy for oral lichen planus. Oral Dis. 2016;22:140–147.
  • Lodi G, Scully C, Carrozzo M, et al. Current controversies in oral lichen planus: report of an international consensus meeting. Part 1. Viral infections and etiopathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:40–51.
  • Roopashree MR, Gondhalekar RV, Shashikanth MC, et al. Pathogenesis of oral lichen planus–a review. J Oral Pathol Med. 2010;39:729–734.
  • Lu R, Zhang J, Sun W, et al. Inflammation-related cytokines in oral lichen planus: an overview. J Oral Pathol Med. 2015;44:1–14. Epub 2013/12/18.
  • Krutchkoff DJ, Cutler L, Laskowski S. Oral lichen planus: the evidence regarding potential malignant transformation. J Oral Pathol. 1978;7:1–7. Epub 1978/02/01.
  • Fitzpatrick SG, Hirsch SA, Gordon SC. The malignant transformation of oral lichen planus and oral lichenoid lesions: a systematic review. J Am Dent Assoc. 2014;145:45–56.
  • Casparis S, Borm JM, Tektas S, et al. Oral lichen planus (OLP), oral lichenoid lesions (OLL), oral dysplasia, and oral cancer: retrospective analysis of clinicopathological data from 2002-2011. Oral Maxillofac Surg. 2015;19:149–156.
  • Budimir V, Richter I, Andabak-Rogulj A, et al. Oral lichen planus - retrospective study of 563 Croatian patients. Medicina Oral Patología Oral Y Cirugia Bucal. 2014;19:e255–e60.
  • McCullough MSANCM. Oral lichen planus: a literature review and update. Arch Dermatol Res. 2016;308:539–551.
  • Mignogna MD, Lo Muzio L, Lo Russo L, et al. Metastases in small thickness oral squamous-cell carcinoma arising in oral lichen planus. Med Oncol. 2001;18:159–163.
  • Wamakulasuriyal S, Johnson NW. van der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007;36:575–578.
  • Van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of managemnt. Oral Oncol. 2009;45:317–323.
  • Georgakopoulou EA, Achtari MD, Achtaris M, et al. Oral lichen planus as a preneoplastic inflammatory model. J Biomed Biotechnol. 2012;2012:759626–759634.
  • Otero-Rey EM, Suarez-Alen F, Penamaria-Mallon M, et al. Malignant transformation of oral lichen planus by a chronic inflammatory process. Use of topical corticosteroids to prevent this progression? Acta Odontol Scand. 2014;72:570–577. Epub 2014/05/23.
  • Gonzalez-Moles MA, Scully C, Gil-Montoya JA. Oral lichen planus: controversies surrounding malignant transformation. Oral Dis. 2008;14:229–243.
  • Mohammad S, Alrashdan CA, Cirillo N, et al. Smoking habits and clinical patterns can alter the inflammatory infiltrate in oral lichenoid lesions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:49–57.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.
  • Chae YC, Vaira V, Caino MC, et al. Mitochondrial akt regulation of hypoxic tumor reprogramming. Cancer Cell. 2016;30:257–272.
  • Lasry A, Zinger A, Ben-Neriah Y. Inflammatory networks underlying colorectal cancer. Nat Immunol. 2016;17:230–240. Epub 2016/02/18.
  • Geis AL, Fan H, Wu X, et al. Regulatory T-cell response to enterotoxigenic bacteroides fragilis colonization triggers il17-dependent colon carcinogenesis. Cancer Discov. 2015;5:1098–1109. Epub 2015/07/24.
  • Lu K, Yang J, Li DC, et al. Expression and clinical significance of glucose transporter-1 in pancreatic cancer. Oncol Lett. 2016;12:243–249.
  • Patel A, Sant S. Hypoxic tumor microenvironment: opportunities to develop targeted therapies. Biotechnology Advances. 2016;34:803–812.
  • Biddlestone J, Bandarra D, Rocha S. The role of hypoxia in inflammatory disease (review). Int J Mol Med. 2015;35:859–869.
  • Taylor CT, Doherty G, Fallon PG, et al. Hypoxia-dependent regulation of inflammatory pathways in immune cells. J Clin Invest. 2016;126:3716–3724.
  • Li Y, Zhang D, Wang X, et al. Hypoxia-inducible miR-182 enhances HIF1alpha signaling via targeting PHD2 and FIH1 in prostate cancer. Sci Rep. 2015;5:12495–12507.
  • Hisamatsu T. Inflammatory bowel disease and colorectal cancer. Nihon Rinsho. 2014;72:56–62. Epub 2014/03/07.
  • Al-Mohaya MA, Al-Otaibi L, Al-Harthi F, et al. Association of genetic polymorphisms in interferon-gamma, interleukin-6 and transforming growth factor-beta1 gene with oral lichen planus susceptibility. BMC Oral Health. 2016;16:76–84.
  • Whitington T, Gao P, Song W, et al. Gene regulatory mechanisms underpinning prostate cancer susceptibility. Nat Genet. 2016;48:387–397.
  • Yang PY, Miao NF, Lin CW, et al. Impact of maspin polymorphism rs2289520 g/c and its interaction with gene to gene, alcohol consumption increase susceptibility to oral cancer occurrence. PLoS One. 2016;11:e0160841–e52.
  • Munoz-Guerra MF, Fernandez-Contreras ME, Moreno AL, et al. Polymorphisms in the hypoxia inducible factor 1-alpha and the impact on the prognosis of early stages of oral cancer. Ann Surg Oncol. 2009;16:2351–2358.
  • Ding M, Xu JY, Fan Y. Altered expression of mRNA for HIF-1alpha and its target genes RTP801 and VEGF in patients with oral lichen planus. Oral Dis. 2010;16:299–304.
  • De Carvalho Fraga CA, Alves LR, Marques-Silva L, et al. High HIF-1alpha expression genotypes in oral lichen planus. Clin Oral Investig. 2013;17:2011–2015.
  • Yan Q, Chen P, Wang ST, et al. Association between HIF-1α C1772T/G1790A polymorphisms and cancer susceptibility: an updated systematic review and meta-analysis based on 40 case-control studies. BMC Cancer. 2014;14:950–965.
  • Yang X, Zhu HC, Zhang C, et al. HIF-1alpha 1772 C/T and 1790 G/A polymorphisms are significantly associated with higher cancer risk: an updated meta-analysis from 34 case-control studies. PLoS One. 2013;8:e80396–e407.
  • Zhou Y, Lin L, Wang Y, et al. The association between hypoxia-inducible factor-1 alpha gene G1790A polymorphism and cancer risk: a meta-analysis of 28 case-control studies. Cancer Cell Int. 2014;14:37–47.
  • Ranasinghe WK, Baldwin GS, Bolton D, et al. HIF1alpha expression under normoxia in prostate cancer–which pathways to target? J Urol. 2015;193:763–770.
  • Hua S, Dias TH. Hypoxia-Inducible Factor (HIF) as a target for novel therapies in rheumatoid arthritis. Front Pharmacol. 2016;7:184–192.
  • Taylor CT. Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. J Physiol. 2008;586:4055–4059.
  • Zhou G, Xia K, Du GF, et al. Activation of nuclear factor-kappa B correlates with tumor necrosis factor-alpha in oral lichen planus: a clinicopathologic study in atrophic-erosive and reticular form. J Oral Pathol Med. 2009;38:559–564.
  • Zhang D, Wang J, Li Z, et al. The activation of nf-kappab in infiltrated mononuclear cells negatively correlates with Treg cell frequency in oral lichen planus. Inflammation. 2015;38:1683–1689. Epub 2015/03/13.
  • Sun HY, Zhou GM, Wang Q, et al. In vitro culture system for keratinocytes obtained from oral lichen planus lesions. Clin Oral Investig. 2014;18:1195–1203. Epub 2013/08/21.
  • Lin XC, Sun HY, Zhen YX, et al. Low expression of glucocorticoid receptor a in oral lichen planus correlates with activation of nuclear factor kappaB: a preliminary study. J Oral Pathol Med. 2014;43:600–605. Epub 2014/10/17.
  • Vlantis K, Wullaert A, Sasaki Y, et al. Constitutive IKK2 activation in intestinal epithelial cells induces intestinal tumors in mice. J Clin Invest. 2011;121:2781–2793. Epub 2011/06/28.
  • Zhang YN, Liu J, Wang SB, et al. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1a-dependent and -independent manners. Oncotarget. 2016;7:23740–23756.
  • Scardina GA, Ruggieri A, Maresi E, et al. Angiogenesis in oral lichen planus: an in vivo and immunohistological evaluation. Arch Immunol Ther Exp (Warsz). 2011;59:457–462.
  • Martano M, Restucci B, Ceccarelli DM, et al. Immunohistochemical expression of vascular endothelial growth factor in canine oral squamous cell carcinomas. Oncol Lett. 2016;11:399–404.
  • Hung PS, Tu HF, Kao SY, et al. miR-31 is upregulated in oral premalignant epithelium and contributes to the immortalization of normal oral keratinocytes. Carcinogenesis. 2014;35:1162–1171.
  • Tao X, Huang Y, Li R, et al. Assessment of local angiogenesis and vascular endothelial growth factor in the patients with atrophic-erosive and reticular oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:661–669.
  • Gavalas NG, Tsiatas M, Tsitsilonis O, et al. VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2. Br J Cancer. 2012;107:1869–1875.
  • Piechota-Polanczyk A, Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:605–620.
  • Mencalha A, Victorino VJ, Cecchini R, et al. Mapping oxidative changes in breast cancer: understanding the basic to reach the clinics. Anticancer Res. 2014;34:1127–1140. Epub 2014/03/07.
  • Bouzid D, Gargouri B, Mansour RB, et al. Oxidative stress markers in intestinal mucosa of Tunisian inflammatory bowel disease patients. Saudi J Gastroenterol. 2013;19:131–135.
  • Zhu H, Li YR. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp Biol Med (Maywood). 2012;237:474–480.
  • Incebiyik A, Camuzcuoglu H, Vural M, et al. Assessment of apoptotic activity dysregulation and oxidative stress in the development of epithelial ovarian cancer: a case-controlled descriptive analysis. Gynecol Obstet Invest. 2016;81:71–77. Epub 2015/06/06.
  • Agha-Hosseini F, Mirzaii-Dizgah I, Farmanbar N, et al. Oxidative stress status and DNA damage in saliva of human subjects with oral lichen planus and oral squamous cell carcinoma. J Oral Pathol Med. 2012;41:736–740.
  • Totan A, Miricescu D, Parlatescu I, et al. Possible salivary and serum biomarkers for oral lichen planus. Biotech Histochem. 2015;90:552–558.
  • Dincer Y, Erzin Y, Himmetoglu S, et al. Oxidative DNA damage and antioxidant activity in patients with inflammatory bowel disease. Dig Dis Sci. 2007;52:1636–1641.
  • Ohnishi S, Ma N, Thanan R, et al. DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxid Med Cell Longev. 2013;2013:387014–387022.
  • Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2ʹ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2009;27:120–139. Epub 2009/05/05.
  • Xu X, Wang Y, Guo W, et al. The significance of the alteration of 8-OHdG in serous ovarian carcinoma. J Ovarian Res. 2013;6:74–82. Epub 2013/10/30.
  • Kaur J, Politis C, Jacobs R. Salivary 8-hydroxy-2-deoxyguanosine, malondialdehyde, vitamin C, and vitamin E in oral pre-cancer and cancer: diagnostic value and free radical mechanism of action. Clin Oral Investig. 2016;20:315–319.
  • Nagini S, Letchoumy PV, Thangavelu A, et al. Of humans and hamsters: a comparative evaluation of carcinogen activation, DNA damage, cell proliferation, apoptosis, invasion, and angiogenesis in oral cancer patients and hamster buccal pouch carcinomas. Oral Oncol. 2009;45:e31–7.
  • Chaiyarit P, Ma N, Hiraku Y, et al. Nitrative and oxidative DNA damage in oral lichen planus in relation to human oral carcinogenesis. Cancer Sci. 2005;96:553–559.
  • Perl A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann N Y Acad Sci. 2015;1346:2239–2250. Epub 2015/04/25.
  • Prodromidis G, Nikitakis NG, Sklavounou A. Immunohistochemical analysis of the activation status of the akt/mtor/ps6 signaling pathway in oral lichen planus. Int J Dent. 2013;2013:743456.
  • Farah CS, Woo SB, Zain RB, et al. Oral cancer and oral potentially malignant disorders. Int J Dent. 2014;2014:853479.
  • Dodd KM, Yang J, Shen MH, et al. mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene. 2015;34:2239–2250.
  • Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013;15:406–416.
  • Naruse T, Kawasaki G, Yanamoto S, et al. Immunohistochemical study of vegf expression in oral squamous cell carcinomas: correlation with the mTOR–HIF-1α pathway. Anticancer Res. 2011;31:4429–4437.
  • Krishnan R, Thayalan DK, Padmanaban R, et al. Association of serum and salivary tumor necrosis factor-α with histological grading in oral cancer and its role in differentiating premalignant and malignant oral disease. Asian Pac J Cancer Prev. 2014;15:7141–7148.
  • Malarkodi T, Sathasivasubramanian S. Quantitative analysis of salivary TNF-alpha in oral lichen planus patients. Int J Dent. 2015;2015:283465–283469.
  • Skrinjar I, Brailo V, Vidovic-Juras D, et al. Evaluation of pretreatment serum interleukin-6 and tumour necrosis factor alpha as a potential biomarker for recurrence in patients with oral squamous cell carcinoma. Medicina Oral Patología Oral Y Cirugia Bucal. 2015;20:e402–e7.
  • Hu S, Chen WC, Hwang GS, et al. Changes in plasma steroids and cytokines levels in betel chewing patients in Taiwan. Steroids. 2016;111:134–138.
  • Zhang Y, Lin M, Zhang S, et al. NF-kappaB-dependent cytokines in saliva and serum from patients with oral lichen planus: a study in an ethnic Chinese population. Cytokine. 2008;41:144–149.
  • Rhodus NL, Cheng B, Ondrey F. Th1/Th2 cytokine ratio in tissue transudates from patients with oral lichen planus. Mediators Inflamm. 2007;2007:19854–19858.
  • Jackson-Bernitsas DG, Ichikawa H, Takada Y, et al. Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene. 2007;26:1385–1397.
  • Yang JP, Hyun MH, Yoon JM, et al. Association between TNF-alpha-308 G/A gene polymorphism and gastric cancer risk: a systematic review and meta-analysis. Cytokine. 2014;70:104–114.
  • Al-Mohaya MA, Al-Harthi F, Arfin M, et al. TNF-alpha, TNF-beta and IL-10 gene polymorphism and association with oral lichen planus risk in Saudi patients. J Appl Oral Sci. 2015;23:295–301.
  • Xavier GM, De Sa AR, Guimaraes AL, et al. Investigation of functional gene polymorphisms interleukin-1beta, interleukin-6, interleukin-10 and tumor necrosis factor in individuals with oral lichen planus. J Oral Pathol Med. 2007;36:476–481.
  • Kimkong I, Hirankarn N, Nakkuntod J, et al. Tumour necrosis factor-alpha gene polymorphisms and susceptibility to oral lichen planus. Oral Dis. 2011;17:206–209.
  • Jin X, Wang J, Zhu L, et al. Association between −308 G/A polymorphism in TNF-alpha gene and lichen planus: a meta-analysis. J Dermatol Sci. 2012;68:127–134.
  • Bai J, Jiang L, Lin M, et al. Association of polymorphisms in the tumor necrosis factor-alpha and interleukin-10 genes with oral lichen planus: a study in a Chinese cohort with Han ethnicity. J Interferon Cytokine Res. 2009;29:381–388.
  • Yang Y, Luo C, Feng R, et al. The TNF-alpha, IL-1B and IL-10 polymorphisms and risk for hepatocellular carcinoma: a meta-analysis. J Cancer Res Clin Oncol. 2011;137:947–952.
  • Sousa H, Oliveira S, Santos AM, et al. Tumour necrosis factor alpha 308 G/A is a risk marker for the progression from high-grade lesions to invasive cervical cancer. Tumour Biol. 2014;35:2561–2564.
  • Nibali L, Fedele S, D’Aiuto F, et al. Interleukin-6 in oral diseases: a review. Oral Dis. 2012;18:236–243.
  • Bromberg J, Wang TC. Inflammation and cancer: IL-6 and STAT3 complete the link. Cancer Cell. 2009;15:79–80.
  • Bollrath J, Phesse TJ, Von Burstin VA, et al. gp130-Mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15:91–102.
  • Jinno T, Kawano S, Maruse Y, et al. Increased expression of interleukin-6 predicts poor response to chemoradiotherapy and unfavorable prognosis in oral squamous cell carcinoma. Oncol Rep. 2015;33:2161–2168.
  • Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009;15:103–113.
  • Goel S, Marwah A, Kaushik S, et al. Role of serum interleukin-6 in deciding therapy for multidrug resistant oral lichen planus. J Clin Exp Dent. 2015;7:e477–e82.
  • Towle R, Truong D, Hogg K, et al. Global analysis of DNA methylation changes during progression of oral cancer. Oral Oncol. 2013;49:1033–1042.
  • Gasche JA, Hoffmann J, Boland CR, et al. Interleukin-6 promotes tumorigenesis by altering DNA methylation in oral cancer cells. Int J Cancer. 2011;129:1053–1063.
  • Borsig L, Wolf MJ, Roblek M, et al. Inflammatory chemokines and metastasis–tracing the accessory. Oncogene. 2014;33:3217–3224. Epub 2013/07/16.
  • Hu JY, Zhang J, Cui JL, et al. Increasing CCL5/CCR5 on CD4+ T cells in peripheral blood of oral lichen planus. Cytokine. 2013;62:141–145.
  • Thomas T, Murooka RR, Platanias LC, et al. CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1. Blood. 2008;111:4892–4901.
  • Swamydas M, Ricci K, Rego SL, et al. Mesenchymal stem cell-derived CCL-9 and CCL-5 promote mammary tumor cell invasion and the activation of matrix metalloproteinases. Cell Adh Migr. 2013;7:315–324.
  • Murooka TT, Rahbar R, Fish EN. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation. Biochem Biophys Res Commun. 2009;387:381–386.
  • Kim MJ, Kim KM, Kim J, et al. BMP-2 promotes oral squamous carcinoma cell invasion by inducing CCL5 release. PLoS One. 2014;9:e108170–e7.
  • Ishikawa T, Nakashiro K-I, Klosek SK, et al. Hypoxia enhances CXCR4 expression by activating HIF-1 in oral squamous cell carcinoma. Oncology Reports. 2009;21:707–712.
  • Guan G, Zhang Y, Lu Y, et al. The HIF-1alpha/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells. Cancer Lett. 2015;357:254–264.
  • Ichimura M, Hiratsuka K, Ogura N, et al. Expression profile of chemokines and chemokine receptors in epithelial cell layers of oral lichen planus. J Oral Pathol Med. 2006;35:167–174.
  • Chen N, Jiang X, Wang J, et al. CXCL12-CXCR4/CXCR7 axis contributes to cell motilities of oral squamous cell carcinoma. Tumor Biol. 2016;37:567–575.
  • Yu T, Wu Y, Huang Y, et al. RNAi targeting CXCR4 inhibits tumor growth through inducing cell cycle arrest and apoptosis. Mol Ther. 2012;20:398–407. Epub 2011/11/24.
  • Zhang C, Li J, Han Y, et al. A meta-analysis for CXCR4 as a prognostic marker and potential drug target in non-small cell lung cancer. Drug Des Devel Ther. 2015;9:3267–3278.
  • Vered M, Furth E, Shalev Y, et al. Inflammatory cells of immunosuppressive phenotypes in oral lichen planus have a proinflammatory pattern of expression and are associated with clinical parameters. Clin Oral Investig. 2013;17:1365–1373.
  • Li X, Zheng Y. Regulatory T cell identity: formation and maintenance. Trends Immunol. 2015;36:344–353.
  • Wang W, Shao S, Jiao Z, et al. The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis. Rheumatol Int. 2012;32:887–893.
  • Ito Y, Adachi Y, Makino; T, et al. Expansion of FOXP3-positive CD4+CD25+T cells associated with disease activity in atopic dermatitis. Ann Allergy Asthma Immunol. 2009;103:160–165.
  • Pesenacker AM, Cook L, Levings MK. The role of FOXP3 in autoimmunity. Curr Opin Immunol. 2016;43:16–23.
  • Tao XA, Xia J, Chen XB, et al. FOXP3 T regulatory cells in lesions of oral lichen planus correlated with disease activity. Oral Dis. 2010;16:76–82.
  • Zhu Y, Li J, Bai Y, et al. Hydroxychloroquine decreases the upregulated frequencies of Tregs in patients with oral lichen planus. Clin Oral Investig. 2014;18:1903–1911.
  • Rakebrandt N, Littringer K, Joller N. Regulatory T cells: balancing protection versus pathology. Swiss Med Wkly. 2016;146:w14343–w50. Epub 2016/08/09.
  • Pastille E, Bardini K, Fleissner D, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res. 2014;74:4258–4269.
  • Probst-Kepper M, Geffers R, Kroger A, et al. GARP: a key receptor controlling FOXP3 in human regulatory T cells. J Cell Mol Med. 2009;13:3343–3357.
  • Kalathil S, Lugade AA, Miller A, et al. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res. 2013;73:2435–2444.
  • Anz D, Mueller W, Golic M, et al. CD103 is a hallmark of tumor-infiltrating regulatory T cells. Int J Cancer. 2011;129:2417–2426.
  • Shen Z, Gao X, Ma L, et al. Expression of Foxp3 and interleukin-17 in lichen planus lesions with emphasis on difference in oral and cutaneous variants. Arch Dermatol Res. 2014;306:441–446.
  • Cho YA, Yoon HJ, Lee JI, et al. Relationship between the expressions of PD-L1 and tumor-infiltrating lymphocytes in oral squamous cell carcinoma. Oral Oncol. 2011;47:1148–1153.
  • Xu F, Feng G, Zhao H, et al. Prognostic value of b7 homolog 1 in gastric cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94:e1911–e7.
  • Liu C, Jiang J, Gao L, et al. Soluble PD-1 aggravates progression of collagen-induced arthritis through Th1 and Th17 pathways. Arthritis Res Ther. 2015;17:340–352.
  • Zhou G, Zhang J, Ren XW, et al. Increased B7-H1 expression on peripheral blood T cells in oral lichen planus correlated with disease severity. J Clin Immunol. 2012;32:794–801.
  • Xylinas E, Robinson BD, Kluth LA, et al. Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. Eur J Surg Oncol. 2014;40:121–127.
  • Song M, Chen D, Lu B, et al. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS One. 2013;8:e65821–e31.
  • Iwasaki K, Yabushita H, Ueno T, et al. Role of hypoxia-inducible factor-1alpha, carbonic anhydrase-IX, glucose transporter-1 and vascular endothelial growth factor associated with lymph node metastasis and recurrence in patients with locally advanced cervical cancer. Oncol Lett. 2015;10:1970–1978.
  • Zeng L, Zhou HY, Tang NN, et al. Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells. World J Gastroenterol. 2016;22:4868–4880.
  • Bostrom PJ, Thoms J, Sykes J, et al. Hypoxia marker GLUT-1 (glucose transporter 1) is an independent prognostic factor for survival in bladder cancer patients treated with radical cystectomy. Bladder Cancer. 2016;2:101–109.
  • Angadi VC, Angadi PV. GLUT-1 immunoexpression in oral epithelial dysplasia, oral squamous cell carcinoma, and verrucous carcinoma. J Oral Sci. 2015;57:115–122.
  • Marius G, Bredell JE, El-Kochairi I, et al. Current relevance of hypoxia in head and neck cancer. Oncotarget. 2016;7:50781–50804.
  • Al-Sharaky DR. HIF-1 a and GLUT-1 expression in atypical endometrial hyperplasia, type i and ii endometrial carcinoma: a potential role in pathogenesis. J Clin Diagn Res. 2016;10:EC20–EC7.
  • Li S, Yang X, Wang P, et al. The effects of GLUT1 on the survival of head and neck squamous cell carcinoma. Cell Physiol Biochem. 2013;32:624–634.
  • Zhang X, Han S, Han HY, et al. Risk prediction for malignant conversion of oral epithelial dysplasia by hypoxia related protein expression. Pathology. 2013;45:478–483. Epub 2013/07/03.
  • Jamali S, Klier M, Ames S, et al. Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function. Sci Rep. 2015;5:13605–13620.
  • Sedlakova O, Svastova E, Takacova M, et al. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front Physiol. 2014;4:400–413.
  • Kwon JE, Jung WH, Koo JS. The expression of metabolism-related proteins in phyllodes tumors. Tumour Biol. 2013;34:115–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.