375
Views
2
CrossRef citations to date
0
Altmetric
Review

Role of dendritic cells in peanut allergy

ORCID Icon, , , & ORCID Icon
Pages 367-378 | Received 28 Dec 2017, Accepted 17 Apr 2018, Published online: 25 Apr 2018

References

  • Sicherer SH, Sampson HA. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol. 2014 Feb;133(2):291–307. quiz 308.
  • Koplin JJ, Mills EN, Allen KJ. Epidemiology of food allergy and food-induced anaphylaxis: is there really a Western world epidemic? Curr Opin Allergy Clin Immunol. 2015 Oct;15(5):409–416. PubMed PMID: 26258921; eng.
  • Nwaru BI, Hickstein L, Panesar SS, et al. Prevalence of common food allergies in Europe: a systematic review and meta-analysis. Allergy. 2014 Aug;69(8):992–1007. PubMed PMID: 24816523; eng.
  • Sicherer SH, Munoz-Furlong A, Godbold JH, et al. US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J Allergy Clin Immunol. 2010 Jun;125(6):1322–1326. PubMed PMID: 20462634; eng.
  • Spergel JM, Beausoleil JL, Pawlowski NA. Resolution of childhood peanut allergy. Ann Allergy Asthma Immunol. 2000 Dec;85(6 Pt 1):473–476. PubMed PMID: 11152168; eng.
  • Grundy J, Matthews S, Bateman B, et al. Rising prevalence of allergy to peanut in children: data from 2 sequential cohorts. J Allergy Clin Immunol. 2002 Nov;110(5):784–789. PubMed PMID: 12417889; eng.
  • Hoyos-Bachiloglu R, Ivanovic-Zuvic D, Alvarez J, et al. Prevalence of parent-reported immediate hypersensitivity food allergy in Chilean school-aged children. Allergol Immunopathol (Madr). 2014 Nov-Dec;42(6):527–532. PubMed PMID: 24388812; eng.
  • Bock SA, Munoz-Furlong A, Sampson HA. Fatalities due to anaphylactic reactions to foods. J Allergy Clin Immunol. 2001 Jan;107(1):191–193. PubMed PMID: 11150011; eng.
  • Berin MC. Mechanisms of allergic sensitization to foods: bypassing immune tolerance pathways. Immunol Allergy Clin North Am. 2012 Feb;32(1):1–10. PubMed PMID: 22244229; eng.
  • Ruiter B, Shreffler WG. The role of dendritic cells in food allergy. J Allergy Clin Immunol. 2012 Apr;129(4):921–928. PubMed PMID: 22464669; eng.
  • Lack G, Fox D, Northstone K, et al. Factors associated with the development of peanut allergy in childhood. N Engl J Med. 2003 Mar 13;348(11):977–985. PubMed PMID: 12637607; eng.
  • Jin H, Oyoshi MK, Le Y, et al. IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice. J Clin Invest. 2009;119:47–60.
  • Du Toit G, Roberts G, Sayre PH, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med. 2015 Feb 26;372(9):803–813. PubMed PMID: 25705822; PubMed Central PMCID: PMCPMC4416404. eng.
  • Lorenz AR, Scheurer S, Vieths S. Food allergens: molecular and immunological aspects, allergen databases and cross-reactivity. Chem Immunol Allergy. 2015;101:18–29. PubMed PMID: 26022861; eng.
  • Becker WM, Jappe U. Peanut allergens. Chem Immunol Allergy. 2014;100:256–267. PubMed PMID: 24925406; eng.
  • Petersen A, Kull S, Rennert S, et al. Peanut defensins: novel allergens isolated from lipophilic peanut extract. J Allergy Clin Immunol. 2015 Nov;136(5):1295–301.e1-5. PubMed PMID: 26037551; eng.
  • Schwager C, Kull S, Behrends J, et al. Peanut oleosins associated with severe peanut allergy-importance of lipophilic allergens for comprehensive allergy diagnostics. J Allergy Clin Immunol. 2017 Nov;140(5):1331–1338.e8. PubMed PMID: 28342912; eng.
  • Zhuang Y, Dreskin SC. Redefining the major peanut allergens. Immunol Res. 2013 Mar;55(1–3):125–134. PubMed PMID: 22948807; PubMed Central PMCID: PMCPMC4451826. eng.
  • Koppelman SJ, Wensing M, Ertmann M, et al. Relevance of Ara h 1, Ara h 2 and Ara h 3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h 2 is the most important peanut allergen. Clin Exp Allergy. 2004 Apr;34(4):583–590. PubMed PMID: 15080811; eng.
  • Klemans RJ, Liu X, Knulst AC, et al. IgE binding to peanut components by four different techniques: Ara h 2 is the most relevant in peanut allergic children and adults. Clin Exp Allergy. 2013 Aug;43(8):967–974. PubMed PMID: 23889250; eng.
  • Vereda A, van Hage M, Ahlstedt S, et al. Peanut allergy: clinical and immunologic differences among patients from 3 different geographic regions. J Allergy Clin Immunol. 2011 Mar;127(3):603–607. PubMed PMID: 21093026; eng.
  • Strobel S, Mowat AM. Oral tolerance and allergic responses to food proteins. Curr Opin Allergy Clin Immunol. 2006 Jun;6(3):207–213. PubMed PMID: 16670516; eng.
  • Berin MC, Shreffler WG. Mechanisms underlying induction of tolerance to foods. Immunol Allergy Clin North Am. 2016 Feb;36(1):87–102. PubMed PMID: 26617229; eng.
  • Esterhazy D, Loschko J, London M, et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat Immunol. 2016 May;17(5):545–555. PubMed PMID: 27019226; PubMed Central PMCID: PMCPMC4837106. eng.
  • Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003 Apr;3(4):331–341. PubMed PMID: 12669023; eng.
  • Chinthrajah RS, Hernandez JD, Boyd SD, et al. Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol. 2016 Apr;137(4):984–997. PubMed PMID: 27059726; PubMed Central PMCID: PMCPMC5030841. eng.
  • Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30:1–22. PubMed PMID: 22136168; eng.
  • Groux H, Fournier N, Cottrez F. Role of dendritic cells in the generation of regulatory T cells. Semin Immunol. 2004 Apr;16(2):99–106. PubMed PMID: 15036233; eng.
  • Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol. 2007 Jan;7(1):19–30. PubMed PMID: 17170756; eng.
  • Kushwah R, Hu J. Complexity of dendritic cell subsets and their function in the host immune system. Immunology. 2011 Aug;133(4):409–419. PubMed PMID: 21627652; PubMed Central PMCID: PMCPMC3143352. eng.
  • Varol C, Vallon-Eberhard A, Elinav E, et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity. 2009 Sep;31(3):502–512. PubMed PMID: 19733097; eng.
  • Scott CL, Bain CC, Wright PB, et al. CCR2(+)CD103(-) intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol. 2015 Mar;8(2):327–339. PubMed PMID: 25138666; PubMed Central PMCID: PMCPMC4270738. eng.
  • Becker M, Guttler S, Bachem A, et al. Ontogenic, phenotypic, and functional characterization of XCR1(+) dendritic cells leads to a consistent classification of intestinal dendritic cells based on the expression of XCR1 and SIRPalpha. Front Immunol. 2014;5:326. PubMed PMID: 25120540; PubMed Central PMCID: PMCPMC4112810. eng.
  • Siddiqui KR, Laffont S, Powrie F. E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity. 2010 Apr;32(4):557–567. PubMed PMID: 20399121; PubMed Central PMCID: PMCPMC2938478. eng.
  • Smit JJ, Bol-Schoenmakers M, Hassing I, et al. The role of intestinal dendritic cells subsets in the establishment of food allergy. Clin Exp Allergy. 2011 Jun;41(6):890–898. PubMed PMID: 21477183; eng.
  • Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005 Jan 14;307(5707):254–258. PubMed PMID: 15653504; eng.
  • Hadis U, Wahl B, Schulz O, et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity. 2011 Feb 25;34(2):237–246. PubMed PMID: 21333554; English.
  • Cassani B, Villablanca EJ, Quintana FJ, et al. Gut-tropic T cells that express integrin alpha4beta7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology. 2011 Dec;141(6):2109–2118. PubMed PMID: 21925467; PubMed Central PMCID: PMCPMC3222333. eng.
  • Akdis CA, Akdis M. Mechanisms of immune tolerance to allergens: role of IL-10 and Tregs. J Clin Invest. 2014 Nov;124(11):4678–4680. PubMed PMID: 25365074; PubMed Central PMCID: PMCPMC4347251. eng.
  • Smaldini PL, Orsini Delgado ML, Fossati CA, et al. Orally-induced intestinal CD4+ CD25+ FoxP3+ Treg controlled undesired responses towards oral antigens and effectively dampened food allergic reactions. PLoS One. 2015;10(10):e0141116. PubMed PMID: 26517875; PubMed Central PMCID: PMCPMC4627767. eng.
  • Wang M, Yang IV, Davidson EJ, et al. Forkhead box protein 3 demethylation is associated with tolerance induction in peanut-induced intestinal allergy. J Allergy Clin Immunol. 2017 May. DOI:10.1016/j.jaci.2017.04.020 PubMed PMID: 28479331; PubMed Central PMCID: PMCPMC5671381. eng
  • Cassani B, Villablanca EJ, De Calisto J, et al. Vitamin A and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Mol Aspects Med. 2012 Feb;33(1):63–76. PubMed PMID: 22120429; PubMed Central PMCID: PMCPMC3246074.
  • Bono MR, Tejon G, Flores-Santibañez F, et al. Retinoic acid as a modulator of T cell immunity. Nutrients. 2016 Jun;8(6). PubMed PMID: 27304965; PubMed Central PMCID: PMCPMC4924190. eng. DOI:10.3390/nu8060349
  • Czarnewski P, Das S, Parigi SM, et al. Retinoic acid and its role in modulating intestinal innate immunity. Nutrients. 2017 Jan;9(1). PubMed PMID: 28098786; PubMed Central PMCID: PMCPMC5295112. eng. DOI:10.3390/nu9010068
  • Bakdash G, Vogelpoel LT, van Capel TM, et al. Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells. Mucosal Immunol. 2015 Mar;8(2):265–278. PubMed PMID: 25027601; eng.
  • Bernardo D, Mann ER, Al-Hassi HO, et al. Lost therapeutic potential of monocyte-derived dendritic cells through lost tissue homing: stable restoration of gut specificity with retinoic acid. Clin Exp Immunol. 2013 Oct;174(1):109–119. PubMed PMID: 23607934; PubMed Central PMCID: PMC3784218. eng.
  • Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007 Aug 6;204(8):1757–1764. PubMed PMID: 17620361; PubMed Central PMCID: PMCPMC2118683. eng.
  • Belkaid Y, Oldenhove G. Tuning microenvironments: induction of regulatory T cells by dendritic cells. Immunity. 2008 Sep;29(3):362–371. PubMed PMID: 18799144; PubMed Central PMCID: PMCPMC3415213. eng.
  • Dawicki W, Li C, Town J, et al. Therapeutic reversal of food allergen sensitivity by mature retinoic acid-differentiated dendritic cell induction of LAG3+CD49b-Foxp3- regulatory T cells. J Allergy Clin Immunol. 2017 May;139(5):1608–1620.e3. PubMed PMID: 28277274; eng.
  • Hall JA, Cannons JL, Grainger JR, et al. Essential role for retinoic acid in the promotion of CD4(+) T cell effector responses via retinoic acid receptor alpha. Immunity. 2011 Mar 25;34(3):435–447. PubMed PMID: 21419664; PubMed Central PMCID: PMCPMC3415227. eng.
  • Christakos S, Dhawan P, Verstuyf A, et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016 Jan;96(1):365–408. PubMed PMID: 26681795; PubMed Central PMCID: PMCPMC4839493. eng.
  • Allen KJ, Koplin JJ, Ponsonby AL, et al. Vitamin D insufficiency is associated with challenge-proven food allergy in infants. J Allergy Clin Immunol. 2013 Apr;131(4):1109–16, 1116.e1-6. PubMed PMID: 23453797; eng.
  • Mullins RJ, Clark S, Wiley V, et al. Neonatal vitamin D status and childhood peanut allergy: a pilot study. Ann Allergy Asthma Immunol. 2012 Nov;109(5):324–328. PubMed PMID: 23062387; eng.
  • Szeles L, Keresztes G, Torocsik D, et al. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J Immunol. 2009 Feb 15;182(4):2074–2083. PubMed PMID: 19201860; eng.
  • Penna G, Adorini L. 1 alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol. 2000 Mar 1;164(5):2405–2411. ji_v164n5p2405 [pii]. PubMed PMID: 10679076; eng.
  • Manavalan JS, Rossi PC, Vlad G, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol. 2003 Jul-Sep;11(3–4):245–258. PubMed PMID: 12967778; eng.
  • van der Aar AM, Sibiryak DS, Bakdash G, et al. Vitamin D3 targets epidermal and dermal dendritic cells for induction of distinct regulatory T cells. J Allergy Clin Immunol. 2011 Jun;127(6):1532–40 e7. S0091-6749(11)00363-0[pii]. PubMed PMID: 21497886; eng.
  • Bak NF, Bendix M, Hald S, et al. High-dose vitamin D3 supplementation decreases the number of colonic CD103+ dendritic cells in healthy subjects. Eur J Nutr. 2017 Sep. DOI:10.1007/s00394-017-1531-y PubMed PMID: 28913556; eng
  • Marietta E, Rishi A, Taneja V. Immunogenetic control of the intestinal microbiota. Immunology. 2015 Jul;145(3):313–322. PubMed PMID: 25913295; PubMed Central PMCID: PMCPMC4479531. eng.
  • Rachid R, Chatila TA. The role of the gut microbiota in food allergy. Curr Opin Pediatr. 2016 Dec;28(6):748–753. PubMed PMID: 27749359; eng.
  • Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005 Jul;122(1):107–118. PubMed PMID: 16009137; eng.
  • Kozakova H, Schwarzer M, Tuckova L, et al. Colonization of germ-free mice with a mixture of three lactobacillus strains enhances the integrity of gut mucosa and ameliorates allergic sensitization. Cell Mol Immunol. 2016 Mar;13(2):251–262. PubMed PMID: 25942514; PubMed Central PMCID: PMCPMC4786630. eng.
  • Noval Rivas M, Burton OT, Wise P, et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol. 2013 Jan;131(1):201–212. PubMed PMID: 23201093; PubMed Central PMCID: PMCPMC3860814. eng.
  • Ling Z, Li Z, Liu X, et al. Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol. 2014 Apr;80(8):2546–2554. PubMed PMID: 24532064; PubMed Central PMCID: PMCPMC3993190. eng.
  • Azad MB, Konya T, Guttman DS, et al. Infant gut microbiota and food sensitization: associations in the first year of life. Clin Exp Allergy. 2015 Mar;45(3):632–643. PubMed PMID: 25599982; eng.
  • Hua X, Goedert JJ, Pu A, et al. Allergy associations with the adult fecal microbiota: analysis of the American Gut Project. EBioMedicine. 2016 Jan;3:172–179. PubMed PMID: 26870828; PubMed Central PMCID: PMCPMC4739432. eng.
  • Stefka AT, Feehley T, Tripathi P, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A. 2014 Sep;111(36):13145–13150. PubMed PMID: 25157157; PubMed Central PMCID: PMCPMC4246970. eng.
  • Dupont C. Food allergy: recent advances in pathophysiology and diagnosis. Ann Nutr Metab. 2011;59(Suppl 1):8–18. PubMed PMID: 22189252; eng.
  • Dreskin SC. Do HLA genes play a role in the genetics of peanut allergy? Ann Allergy Asthma Immunol. 2006;96:766–768. United States.
  • Chambers SJ, Bertelli E, Winterbone MS, et al. Adoptive transfer of dendritic cells from allergic mice induces specific immunoglobulin E antibody in naive recipients in absence of antigen challenge without altering the T helper 1/T helper 2 balance. Immunology. 2004 May;112(1):72–79. PubMed PMID: 15096186; PubMed Central PMCID: PMCPMC1782460. eng.
  • Frischmeyer-Guerrerio PA, Guerrerio AL, Chichester KL, et al. Dendritic cell and T cell responses in children with food allergy. Clin Exp Allergy. 2011 Jan;41(1):61–71. PubMed PMID: 20825428; PubMed Central PMCID: PMCPMC3006008. eng.
  • Snider DP, Marshall JS, Perdue MH, et al. Production of IgE antibody and allergic sensitization of intestinal and peripheral tissues after oral immunization with protein Ag and cholera toxin. J Immunol. 1994 Jul 15;153(2):647–657. PubMed PMID: 8021502; eng.
  • Gagliardi MC, Sallusto F, Marinaro M, et al. Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur J Immunol. 2000 Aug;30(8):2394–2403. PubMed PMID: 10940931; eng.
  • Blázquez AB, Berin MC. Gastrointestinal dendritic cells promote Th2 skewing via OX40L. J Immunol. 2008 Apr 1;180: 4441–4450.
  • Ruiter B, Shreffler WG. Innate immunostimulatory properties of allergens and their relevance to food allergy. Semin Immunopathol. 2012 Sep;34(5):617–632. PubMed PMID: 22886110; PubMed Central PMCID: PMCPMC3459673. eng.
  • Shreffler WG, Castro RR, Kucuk ZY, et al. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol. 2006 Sep 15;177(6):3677–3685. PubMed PMID: 16951327; eng.
  • Maleki SJ, Chung SY, Champagne ET, et al. The effects of roasting on the allergenic properties of peanut proteins. J Allergy Clin Immunol. 2000 Oct;106(4):763–768. PubMed PMID: 11031348; eng.
  • Abramson MJ, Puy RM, Weiner JM. Injection allergen immunotherapy for asthma. Cochrane Database Syst Rev. 2010 Aug 4;(8):CD001186. DOI: 10.1002/14651858.CD001186.pub2. PubMed PMID: 20687065; eng.
  • Calamita Z, Saconato H, Pela AB, et al. Efficacy of sublingual immunotherapy in asthma: systematic review of randomized-clinical trials using the Cochrane Collaboration method. Allergy. 2006 Oct;61(10):1162–1172. PubMed PMID: 16942563; eng.
  • Boyle RJ, Elremeli M, Hockenhull J, et al. Venom immunotherapy for preventing allergic reactions to insect stings. Cochrane Database Syst Rev. 2012 Oct;17(10):CD008838. PubMed PMID: 23076950; eng.
  • Meadows A, Kaambwa B, Novielli N, et al. A systematic review and economic evaluation of subcutaneous and sublingual allergen immunotherapy in adults and children with seasonal allergic rhinitis. Health Technol Assess. 2013 Jul;17(27):vi, xi-xiv, 1–322. PubMed PMID: 23827204; PubMed Central PMCID: PMCPMC4780904. eng.
  • Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy: multiple suppressor factors at work in immune tolerance to allergens. J Allergy Clin Immunol. 2014 Mar 1;133(3):621–631. PubMed PMID: 24581429; English.
  • Wood RA. Food allergen immunotherapy: current status and prospects for the future. J Allergy Clin Immunol. 2016 Apr;137(4):973–982. PubMed PMID: 27059725; eng.
  • Jones SM, Agbotounou WK, Fleischer DM, et al. Safety of epicutaneous immunotherapy for the treatment of peanut allergy: a phase 1 study using the Viaskin patch. J Allergy Clin Immunol. 2016 Apr;137(4):1258–1261.e10. PubMed PMID: 26920463; eng.
  • Gernez Y, Nowak-Wegrzyn A. Immunotherapy for food allergy: are we there yet? J Allergy Clin Immunol Pract. 2017 Mar-Apr;5(2):250–272. PubMed PMID: 28283151; eng.
  • Weissler KA, Rasooly M, DiMaggio T, et al. Identification and analysis of peanut-specific effector T and regulatory T cells in children allergic and tolerant to peanut. J Allergy Clin Immunol. 2018 Feb. DOI:10.1016/j.jaci.2018.01.035 PubMed PMID: 29454004; eng
  • Frischmeyer-Guerrerio PA, Keet CA, Guerrerio AL, et al. Modulation of dendritic cell innate and adaptive immune functions by oral and sublingual immunotherapy. Clin Immunol. 2014 Nov;155(1):47–59. PubMed PMID: 25173802; PubMed Central PMCID: PMCPMC4252363. eng.
  • Syed A, Garcia MA, Lyu SC, et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol. 2014 Feb;133(2):500–510. PubMed PMID: 24636474; PubMed Central PMCID: PMCPMC4121175. eng.
  • Wisniewski JA, Commins SP, Agrawal R, et al. Analysis of cytokine production by peanut-reactive T cells identifies residual Th2 effectors in highly allergic children who received peanut oral immunotherapy. Clin Exp Allergy. 2015 Jul;45(7):1201–1213. PubMed PMID: 25823600; PubMed Central PMCID: PMCPMC4472497. eng.
  • Tordesillas L, Mondoulet L, Blazquez AB, et al. Epicutaneous immunotherapy induces gastrointestinal LAP(+) regulatory T cells and prevents food-induced anaphylaxis. J Allergy Clin Immunol. 2017 Jan;139(1):189–201.e4. PubMed PMID: 27417020; PubMed Central PMCID: PMCPMC5149454. eng.
  • Sampson HA, Shreffler WG, Yang WH, et al. Effect of varying doses of epicutaneous immunotherapy vs placebo on reaction to peanut protein exposure among patients with peanut sensitivity: a randomized clinical trial. Jama. 2017 Nov 14;318(18):1798–1809. PubMed PMID: 29136445; PubMed Central PMCID: PMCPMC5820709. eng.
  • Versteven M, Van den Bergh JMJ, Marcq E, et al. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front Immunol. 2018;9:394. PubMed PMID: 29599770; PubMed Central PMCID: PMCPMC5863527. eng.
  • Hackstein H, Thomson AW. Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol. 2004 Jan;4(1):24–34. PubMed PMID: 14704765; eng.
  • Pozsgay J, Szekanecz Z, Sármay G. Antigen-specific immunotherapies in rheumatic diseases. Nat Rev Rheumatol. 2017 Sep;13(9):525–537. PubMed PMID: 28701761; eng.
  • Popov I, Li M, Zheng X, et al. Preventing autoimmune arthritis using antigen-specific immature dendritic cells: a novel tolerogenic vaccine. Arthritis Res Ther. 2006;8(5):R141. PubMed PMID: 16911769; PubMed Central PMCID: PMCPMC1779442. eng.
  • Phillips BE, Garciafigueroa Y, Trucco M, et al. Clinical tolerogenic dendritic cells: exploring therapeutic impact on human autoimmune disease. Front Immunol. 2017;8:1279. PubMed PMID: 29075262; PubMed Central PMCID: PMCPMC5643419. eng.
  • Benham H, Nel HJ, Law SC, et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci Transl Med. 2015 Jun 3;7(290):290ra87. PubMed PMID: 26041704; eng.
  • Borzutzky A, Camargo CA Jr. Role of vitamin D in the pathogenesis and treatment of atopic dermatitis. Expert Rev Clin Immunol. 2013 Aug;9(8):751–760. PubMed PMID: 23971753; eng.
  • Rodriguez B, Prioult G, Bibiloni R, et al. Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow’s milk allergy in mice. FEMS Microbiol Ecol. 2011 Apr;76(1):133–144. PubMed PMID: 21223329; eng.
  • Kamalakannan M, Chang LM, Grishina G, et al. Identification and characterization of DC-SIGN-binding glycoproteins in allergenic foods. Allergy. 2016 Aug;71(8):1145–1155. PubMed PMID: 26948687; eng.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.