1,046
Views
26
CrossRef citations to date
0
Altmetric
Review

CD40 ligand deficiency: treatment strategies and novel therapeutic perspectives

, , , , &
Pages 529-540 | Received 12 Nov 2018, Accepted 21 Jan 2019, Published online: 18 Feb 2019

References

  • Noelle RJ, Roy M, Shepherd DM, et al. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Nat Acad Sci USA. 1992;89(14):6550–6554.
  • Noelle RJ, Ledbetter JA, Aruffo A. CD40 and its ligand, an essential ligand- receptor pair for thymus-dependent B-cell activation. Immunol Today. 1992;13(11):431–4333.
  • Kim HS, Zhang X, Choi YS. Activation and proliferation of follicular dendritic cell-like cells by activated T lymphocytes. J Immunol. 1994;153(19):2951–2961.
  • Caux C, Massacrier C, Vanbervliet B, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med. 1994;180(4):1263–1272.
  • Heeschen C, Dimmeler S, Hamm CW, et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med. 2003;348(12):1104–1111.
  • Henn V, Slupsky JR, Grafe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391(6667):591–594.
  • Mavroudi I, Papadaki HA. The role of CD40/CD40 ligand interactions in bone marrow granulopoiesis. Sci World J. 2011;11:2011–2019.
  • Mazzei GJ, Edgerton MD, Losberger C, et al. Recombinant soluble trimeric CD40 ligand is biologically active. J Biol Chem. 1995;270(13):7025–7028.
  • Malik N, Greenfield BW, Wahl AF, et al. Activation of human monocytes through CD40 induces matrix metalloproteinases. J Immunol. 1996;156(10):3952–3960.
  • Cabral-Marques O, França TT, Al-Sbiei A, et al. CD40 ligand deficiency causes functional defects of peripheral neutrophils that are improved by exogenous IFN-γ. J Allergy Clin Immunol. 2018;142(5):1571–1588.
  • Cabral-Marques O, Arslanian C, Ramos R, et al. Dendritic cells from X-linked hyper-IgM patients present impaired responses to Candida albicans and Paracoccidioides brasiliensis. J Allergy Clin Immunol. 2012;129(3):778–786.
  • Saeland S, Duvert V, Caux C, et al. Distribution of surface-membrane molecules on bone marrow and cord blood CD34+ hematopoietic cells. Exp Hematol. 1992;20(1):24–33.
  • Solanilla A, Dechanet J, El Andaloussi A, et al. CD40-ligand stimulates myelopoiesis by regulating flt3-ligand and thrombopoietin production in bone marrow stromal cells. Blood. 2000;95(12):3758–3764.
  • Levy J, Espanol-Boren T, Thomas C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997;131(1 Pt 1):47–54.
  • Aruffo A, Farrington M, Hollenbaugh D, et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993;72(2):291–300.
  • Allen RC, Armitage RJ, Conley ME, et al. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993;259(5097):990–993.
  • DiSanto JP, Bonnefoy JY, Gauchatt JF, et al. CD40 ligand mutations in X-linked immunodeficiency with hyper-IgM. Nature. 1993;361(6412):541–543.
  • Fuleihan R, Ramesh N, Loh R, et al. Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc Natl Acad Sci USA. 1993;90(6):2170–2173.
  • Korthäuer U, Graf D, Mages HW, et al. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993;361(6412):539–541.
  • Cabral-Marques O, Klaver S, Schimke LF, et al. First report of the hyper-IgM syndrome registry of the latin american society for immunodeficiencies: novel mutations, unique infections, and outcomes. J Clin Immunol. 2014;34(2):146–156.
  • Cabral-Marques O, Schimke LF, Pereira PV, et al. Expanding the clinical and genetic spectrum of human CD40L deficiency: the occurrence of paracoccidioidomycosis and other unusual infections in brazilian patients. J Clin Immunol. 2012;32(2):212–220.
  • Leven EA, Maffucci P, Ochs HD, et al. Hyper IgM syndrome: a report from the USIDNET registry. J Clin Immunol. 2016;36(5):490–501.
  • Picard C, Bobby Gaspar H, Al-herz W, et al. International union of immunological societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol. 2018;38(1):96–128.
  • Winkelstein JA, Marino MC, Ochs H, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine. 2003;82(6):373–384.
  • Wang LL, Zhou W, Zhao W, et al. Clinical features and genetic analysis of 20 Chinese patients with X-linked hyper-IgM syndrome. J Immunol Res. 2014;2014:683160.
  • Jasinska A, Kalwak K, Trelinska J, et al. Successful haploidentical PBSCT with subsequent T-cell addbacks in a boy with hyperIgM syndrome presenting as severe congenital neutropenia. Pediatr Transplant. 2013;17(1):E37–40.
  • Heinold A, Hanebeck B, Daniel V, et al. Pitfalls of “hyper”-IgM syndrome: A new CD40 ligand mutation in the presence of low IgM levels. A case report and a critical review of the literature. Infection. 2010;38(6):491–496.
  • Subauste CS, Wessendarp M, Sorensen RU, et al. CD40-CD40 ligand interaction is central to cell-mediated immunity against Toxoplasma gondii: patients with hyper IgM syndrome have a defective type 1 immune response that can be restored by soluble CD40 ligand trimer. J Immunol. 1999;162(11):6690–6700.
  • Jain A, Atkinson TP, Lipsky PE, et al. Defects of T-cell effector function and post-thymic maturation in X- linked hyper-IgM syndrome. J Clin Invest. 1999;103(8):1151–1158.
  • Xu Z, Zan H, Pone EJ, et al. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol. 2012;12(7):517–531.
  • al-Ramadi BK, Fernandez-Cabezudo MJ, Ullah A, et al. CD154 is essential for protective immunity in experimental salmonella infection: evidence for a dual role in innate and adaptive immune responses. J Immunol. 2006;176(1):496–506.
  • Cabral-Marques O, Ramos RN, Schimke LF, et al. Human CD40 ligand deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-γ. J Allergy Clin Immunol. 2017;139(3):900–912.
  • Lee WI, Torgerson TR, Schumacher MJ, et al. Molecular analysis of a large cohort of patients with the hyper immunoglobulin M (IgM) syndrome. Blood. 2005;105(5):1881–1890.
  • Seyama K, Kobayashi R, Hasle H, et al. Parvovirus B19-induced anemia as the presenting manifestation of X-linked hyper-IgM syndrome. J Infect Dis. 1998;178(2):318–324.
  • Davies EG, Thrasher AJ. Update on the hyper immunoglobulin M syndromes. Br J Haematol. 2010;149(2):167–180.
  • Uygungil B, Bonilla F, Lederman H. Evaluation of a patient with hyper-IgM syndrome. J Allergy Clin Immunol. 2012;129(6):1692–1693.
  • de la Morena MT. Clinical phenotypes of hyper-IgM syndromes. J Allergy Clin Immunol Pract. 2016;4(6):1023–1036.
  • Qamar N, Fuleihan RL. The hyper IgM syndromes. Clin Rev Allergy Immunol. 2014;46(2):120–130.
  • Durandy A, Kracker S. Immunoglobulin class-switch recombination deficiencies. Arthritis Res Ther. 2012;14(4):218.
  • Hirbod-Mobarakeh A, Aghamohammadi A, Rezaei N. Immunoglobulin class switch recombination deficiency type 1 or CD40 ligand deficiency: from bedside to bench and back again. Expert Rev Clin Immunol. 2014;10(1):91–105.
  • Vargas-Hernández A, Berrón-Ruiz L, Staines-Boone T, et al. Clinical and genetic analysis of patients with X-linked hyper-IgM syndrome. Clin Genet. 2013;83(6):585–587.
  • Madkaikar M, Gupta M, Chavan S, et al. X-linked hyper IgM syndrome: clinical, immunological and molecular features in patients from India. Blood Cells Mol Dis. 2014;53(3):99–104.
  • Macchi P, Villa A, Strina D, et al. Characterization of nine novel mutations in the CD40 ligand gene in patients with X-linked hyper IgM syndrome of various ancestry. Am J Hum Genet. 1995;56(4):898–906.
  • Seyama K, Nonoyama S, Gangsaas I, et al. Mutations of the CD40 ligand gene and its effect on CD40 ligand expression in patients with X-linked hyper IgM syndrome. Blood. 1998;92(7):2421–2434.
  • Lee WI, Huang JL, Yeh KW, et al. Clinical features and genetic analysis of Taiwanese patients with the hyper IgM syndrome phenotype. Pediatr Infect Dis J. 2013;32(9):1010–1016.
  • Yong PF, Post FA, Gilmour KC, et al. Cerebral toxoplasmosis in a middle-aged man as first presentation of primary immunodeficiency due to a hypomorphic mutation in the CD40 ligand gene. J Clin Pathol. 2008;61(11):1220–1222.
  • França TT, Leite LFB, Maximo TA, et al. A novel de novo mutation in the CD40 ligand gene in a patient with a mild X-linked hyper-IgM phenotype initially diagnosed as CVID: new aspects of old diseases. Front Pediatr. 2018;6:130.
  • Danielian S, Oleastro M, Eva Rivas M, et al. Clinical follow-up of 11 Argentinian CD40L-deficient patients with 7 unique mutations including the so-called “milder” mutants. J Clin Immunol. 2007;27(4):455–459.
  • Schneider LC. Hyper IgM syndrome. Clin Rev Allergy Immunol. 2000;19(2):205–215.
  • Hayward AR, Levy J, Facchetti F, et al. Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J Immunol. 1997;158(2):977–983.
  • Günaydin NC, Chou J, Karaca NE, et al. A novel disease-causing CD40L mutation reduces expression of CD40 ligand, but preserves CD40 binding capacity. Clin Immunol. 2014;153(2):288–291.
  • Bishu S, Madhavan D, Perez P, et al. CD40 ligand deficiency: neurologic sequelae with radiographic correlation. Pediatr Neurol. 2009;41(6):419–427.
  • Kanegane H, Hoshino A, Okano T, et al. Flow cytometry-based diagnosis of primary immunodeficiency diseases. Allergol Int. 2018;67(1):43–54.
  • Bonilla FA, Khan DA, Ballas ZK, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 2015;136(5):1186–1205.
  • DiSanto JP, Markiewicz S, Gauchat J-F, et al. Brief report: prenatal diagnosis of X-linked hyper IgM syndrome. N Engl J Med. 1994;330(14):969–973.
  • Prasad ML, Velickovic M, Weston SA, et al. Mutational screening of the CD40 ligand (CD40L) gene in patients with X linked hyper-IgM syndrome (XHIM) and determination of carrier status in female relatives. J Clin Pathol. 2005;58(1):90–92.
  • Thusberg J, Vihinen M. The structural basis of hyper IgM deficiency – CD40L mutations. Protein Eng Des Sel. 2007;20(3):133–141.
  • Gilmour KC, Walshe D, Heath S, et al. Immunological and genetic analysis of 65 patients with a clinical suspicion of X linked hyper-IgM. Mol Pathol. 2003;56(5):256–262.
  • Michel NA, Zirlik A, Wolf D. CD40L and its receptors in atherothrombosis-an update. Front Cardiovasc Med. 2017;4:40.
  • de la Morena MT, Leonard D, Torgerson TR, et al. Long term outcomes of 176 patients with X-linked hyper IgM syndrome treated with or without hematopoietic cell transplantation. J Allergy Clin Immunol. 2017;139(4):1282–1292.
  • Pai SY, Cowan MJ. Stem cell transplantation for primary immunodeficiency diseases. Curr Opin Allergy Clin Immunol. 2014;14(6):521–526.
  • Mitsui-Sekinaka K, Imai K, Sato H, et al. Clinical features and hematopoietic stem cell transplantations for CD40 ligand deficiency in Japan. J Allergy Clin Immunol. 2015;136(4):1018–1024.
  • Khawaja K, Gennery AR, Flood TJ, et al. Bone marrow transplantation for CD40 ligand deficiency: a single centre experience. Arch Dis Child. 2001;84(6):508–511.
  • Gennery AR, Khawaja K, Veys P, et al. Treatment of CD40 ligand deficiency by hematopoietic stem cell transplantation : a survey of the European experience, 1993-2002. Blood. 2004;103(3):1152–1157.
  • Al-Saud B, Al-Mousa H, Al-Ahmari A, et al. Hematopoietic stem cell transplant for hyper-IgM syndrome due to CD40L defects: a single-center experience. Pediatr Transplant. 2015;19(6):634–639.
  • Allewelt H, Martin PL, Szabolcs P, et al. Hematopoietic stem cell transplantation for CD40 ligand deficiency: single institution experience. Pediatr Blood Cancer. 2015;62(12):2216–2222.
  • Notarangelo LD, Hayward AR. X-linked immunodeficiency with hyper-IgM (XHIM). Clin Exp Immunol. 2000;120(3):399–405.
  • Kuruvilla M, De la Morena MT. Antibiotic prophylaxis in primary immune deficiency disorders. J Allergy Clin Immunol Pract. 2013;1(6):573–582.
  • Orange JS, Hossny EM, Weiler CR, et al. Use of intravenous immunoglobulin in human disease: A review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol. 2006;117(4SUPPL):S525–53.
  • Orange JS, Grossman WJ, Navickis RJ, et al. Impact of trough IgG on pneumonia incidence in primary immunodeficiency: a meta-analysis of clinical studies. Clin Immunol. 2010;137(1):21–30.
  • De Gracia J, Vendrell M, Álvarez A, et al. Immunoglobulin therapy to control lung damage in patients with common variable immunodeficiency. Int Immunopharmacol. 2004;4(6):745–753.
  • Atarod L, Aghamohammadi A, Moin M, et al. Successful management of neutropenia in a patient with CD40 ligand deficiency by immunoglobulin replacement therapy. Iran J Allergy Asthma Immunol. 2007;6(1):37–40.
  • Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immunol. 2017;139(3S):S1–S46.
  • Shehata N, Palda V, Bowen T, et al. The use of immunoglobulin therapy for patients with primary immune deficiency: an evidence-based practice guideline. Transfus Med Rev. 2010;24(SUPPL. 1):S28–50.
  • Condino-Neto A, Costa-Carvalho BT, Grumach AS, et al. Guidelines for the use of human immunoglobulin therapy in patients with primary immunodeficiencies in Latin America. Allergol Immunopathol (Madr). 2014;42(3):245–260.
  • Stiehm ER. Adverse effects of human immunoglobulin therapy. Transfus Med Rev. 2013;27(3):171–178.
  • Mori M, Nonoyama S, Neubauer M, et al. Mutation analysis and therapeutic response to granulocyte colony-stimulating factor in a case of hyperimmunoglobulin m syndrome with chronic neutropenia. J Pedriatr Hematol Oncol. 2000;22(3):288–289.
  • Badolato R, Fontana S, Notarangelo LD, et al. Congenital neutropenia: advances in diagnosis and treatment. Curr Opin Allergy Clin Immunol. 2004;4(6):513–521.
  • Dwivedi P, Greis KD. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. Exp Hematol. 2017;46:9–20.
  • Touw IP, Bontenbal M. Granulocyte colony-stimulating factor: key (F)actor or innocent bystander in the development of secondary myeloid malignancy? J Natl Cancer Inst. 2007;99(3):183–186.
  • Filipovich AH, Stone JV, Tomany SC, et al. Impact of donor type on outcome of bone marrow transplantation for Wiskott-Aldrich syndrome: collaborative study of the International Bone Marrow Transplant. Blood. 2001;97(6):1598–1603.
  • Pai SY, Logan BR, Griffith LM, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371(5):434–446.
  • Bousfiha AA, Jeddane L, Ailal F, et al. Primary immunodeficiency diseases worldwide: more common than generally thought. J Clin Immunol. 2013 Jan;33(1):1–7.
  • Meyts I, Bosch B, Bolze A, et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol. 2016;138(4):957–969.
  • Ziegner UH, Kobayashi RH, Cunningham-Rundles C, et al. Progressive neurodegeneration in patients with primary immunodeficiency disease on IVIG treatment. Clin Immunol. 2002;102(1):19–24.
  • Marques OC, Rodrigo Nalio R. Human CD40L deficiency dysregulates the macrophage transcriptome causing functional defects that are improved by exogenous IFN-γ. J Allergy Clin Immunol. 2016;139(3):900–912.
  • Jain A, Kovacs JA, Nelson DL, et al. Partial immune reconstitution of X-linked hyper IgM syndrome with recombinant CD40 ligand. Blood. 2011;118(14):3811–3817.
  • Fan X, Upadhyaya B, Wu L, et al. CD40 agonist antibody mediated improvement of chronic Cryptosporidium infection in patients with X- linked hyper IgM syndrome. Clin Immunol. 2012;143(2):152–161.
  • Vonderheide RH, Dutcher JP, Anderson JE, et al. Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol. 2001;19(13):3280–3287.
  • Rahman M, Zhang S, Chew M, et al. Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis. J Thromb Haemost. 2013;11(7):1385–1398.
  • Furman MI, Krueger LA, Linden MD, et al. Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J Am Coll Cardiol. 2004;43(12):2319–2325.
  • Brown MP, Topham DJ, Sangster MY, et al. Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat Med. 1998;4(11):1253–1260.
  • Sacco MG, Ungari M, Catò EM, et al. Lymphoid abnormalities in CD40 ligand transgenic mice suggest the need for tight regulation in gene therapy approaches to hyper immunoglobulin M (IgM) syndrome. Cancer Gene Ther. 2000;7(10):1299–1306.
  • Henn V, Steinbach S, Büchner K, et al. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood. 2001;98(4):1047–1054.
  • Gavins FN, Li G, Russell J, et al. Microvascular thrombosis and CD40/CD40L signaling. J Thromb Haemost. 2011;9(3):574–581.
  • Kato K, Santana-Sahagún E, Rassenti LZ, et al. The soluble CD40 ligand sCD154 in systemic lupus erythematosus. J Clin Invest. 1999;104(7):947–955.
  • Perazzio SF, Soeiro-Pereira PV, dos Santos VC, et al. Soluble CD40L is associated with increased oxidative burst and neutrophil extracellular trap release in Behçet’s disease. Arthritis Res Ther. 2017;19(1):235.
  • Komura K, Sato S, Hasegawa M, et al. Elevated circulating CD40L concentrations in patients with systemic sclerosis. J Rheumatol. 2004;31(3):514–519.
  • Kotowicz K, Dixon GL, Klein NJ, et al. Biological function of CD40 on human endothelial cells: costimulation with CD40 ligand and interleukin-4 selectively induces expression of vascular cell adhesion molecule-1 and P-selectin resulting in preferential adhesion of lymphocytes. Immunology. 2000;100(4):441–448.
  • Bou Khzam L, Hachem A, Zaid Y, et al. Soluble CD40 ligand impairs the anti-platelet function of peripheral blood angiogenic outgrowth cells via increased production of reactive oxygen species. Thromb Haemost. 2013 Feb;109(5):940–947.
  • Damås JK, Otterdal K, Yndestad A, et al. Soluble CD40 ligand in pulmonary arterial hypertension: possible pathogenic role of the interaction between platelets and endothelial cells. Circulation. 2004;110(8):999–1005.
  • Ezekowitz RA, Sieff CA, Dinauer MC, et al. Restoration of phagocyte function by interferon-gamma in X-linked chronic granulomatous disease occurs at the level of a progenitor cell. Blood. 1990;76(12):2443–2448.
  • Bemiller LS, Roberts DH, Starko KM, et al. Safety and effectiveness of long-term interferon gamma therapy in patients with chronic granulomatous disease. Blood Cells Mol Dis. 1995;21(3):239–247.
  • Marciano BE, Wesley R, De Carlo ES, et al. Long-term interferon-gamma therapy for patients with chronic granulomatous disease. Clin Infect Dis. 2004;39(5):692–699.
  • Al-Muhsen S, Casanova JL. The genetic heterogeneity of mendelian susceptibility to mycobacterial diseases. J Allergy Clin Immunol. 2008;122(6):1043–1051.
  • Miller CH, Maher SG, Young HA. Clinical use of interferon-γ. Ann N Y Acad Sci. 2009;1182:69–79.
  • Gao X-F, Yang Z-W, Li J. Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: a systematic review. Int J Infect Dis. 2011;15(9):e594–600.
  • Abzug MJ, Walsh TJ. Interferon-gamma and colony-stimulating factors as adjuvant therapy for refractory fungal infections in children. Pediatr Infect Dis J. 2004;23(8):769–773.
  • Kelleher P, Goodsall A, Mulgirigama A, et al. Interferon-gamma therapy in two patients with progressive chronic pulmonary aspergillosis. Eur Respir J. 2006;27(6):1307–1310.
  • Rivat C, Santilli G, Gaspar HB, et al. Gene therapy for primary immunodeficiencies. Hum Gene Ther. 2012;23(7):668–675.
  • Ghosh S, Thrasher AJ, Gaspar HB. Gene therapy for monogenic disorders of the bone marrow. Br J Haematol. 2015;171(2):155–170.
  • Sadelain M. Insertional oncogenesis in gene therapy: how much of a risk? Gene Ther. 2004;11(7):569–573.
  • Hubbard N, Hagin D, Sommer K, et al. Targeted gene editing restores regulated CD40L function in X-linked hyper-IgM syndrome. Blood. 2016 May;127(21):2513–2522.
  • Kuo CY, Long JD, Campo-Fernandez B, et al. Site-specific gene editing of human hematopoietic stem cells for X-linked hyper-IgM syndrome. Cell Rep. 2018;23(9):2606–2616.
  • Tahara M, Pergolizzi RG, Kobayashi H, et al. Trans-splicing repair of CD40 ligand deficiency results in naturally regulated correction of a mouse model of hyper-IgM X-linked immunodeficiency. Nat Med. 2004;10(8):835–841.
  • Koller U, Wally V, Bauer JW, et al. Considerations for a successful RNA trans-splicing repair of genetic disorders. Mol Ther Nucleic Acids. 2014;3:e157.
  • Bousfiha AA, Jeddane L, Condino-Neto A. Primary immunodeficiency in the developing countries. In: Etzioni A, Ochs HD, editors. Primary immunodeficy disorders: a historic and scientific perspective. Oxford: Elsevier Academic Press; 2014. p. 65–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.