799
Views
36
CrossRef citations to date
0
Altmetric
Review

Epithelial physical barrier defects in chronic rhinosinusitis

, &
Pages 679-688 | Received 04 Jan 2019, Accepted 27 Mar 2019, Published online: 09 Apr 2019

References

  • Fokkens WJ, Lund VJ, Mullol J, et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl. 2012;23:1–298. PubMed: 22764607
  • Akdis CA, Bachert C, Cingi C, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European academy of allergy and clinical immunology and the American academy of allergy, asthma & immunology. J Allergy Clin Immunol. 2013;131(6):1479–1490. PubMed: 23587334
  • Zhang Y, Gevaert E, Lou H, et al. Chronic rhinosinusitis in Asia. J Allergy Clin Immunol. 2017;140(5):1230–1239. PubMed: 28987810
  • Cao PP, Li HB, Wang BF, et al. Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult Chinese. J Allergy Clin Immunol. 2009;124(3):478–484, 484.e1-2. PubMed: 19541359
  • Lam K, Schleimer R, Kern RC. The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses. Curr Allergy Asthma Rep. 2015;15(7):41. PubMed: 26143392
  • Khalmuratova R, Park JW, Shin HW. Immune cell responses and mucosal barrier disruptions in chronic rhinosinusitis. Immune Netw. 2017;17(1):60–67. PubMed: 28261021
  • Lambrecht BN, Hammad H. Allergens and the airway epithelium response: gateway to allergic sensitization. J Allergy Clin Immunol. 2014;134(3):499–507. PubMed: 25171864
  • Niessen CM. Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol. 2007;127(11):2525–2532. PubMed: 17934504
  • Kojima T, Go M, Takano K, et al. Regulation of tight junctions in upper airway epithelium. Biomed Res Int. 2013;2013:947072. PubMed: 23509817.
  • Zihni C, Mills C, Matter K, et al. Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016;17(9):564–580. PubMed: 27353478
  • Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4. J Allergy Clin Immunol. 2012;130(5):1087–1096.e10. PubMed: 22840853.
  • Balda MS, Matter K. Tight junctions and the regulation of gene expression. Biochim Biophys Acta. 2009;1788(4):761–767. PubMed: 19121284
  • Liang GH, Weber CR. Molecular aspects of tight junction barrier function. Curr Opin Pharmacol. 2014;19:84–89. PubMed: 25128899
  • Pearce SC, Al-Jawadi A, Kishida K, et al. Marked differences in tight junction composition and macromolecular permeability among different intestinal cell types. BMC Biol. 2018;16(1):19. PubMed: 29391007
  • Weber CR. Dynamic properties of the tight junction barrier. Ann N Y Acad Sci. 2012;1257:77–84. PubMed: 22671592
  • Yuksel H, Turkeli A. Airway epithelial barrier dysfunction in the pathogenesis and prognosis of respiratory tract diseases in childhood and adulthood. Tissue Barriers. 2017;5(4):e1367458. PubMed: 28886270.
  • Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017;12:331–357. PubMed: 27959637
  • Bernstein JM, Gorfien J, Noble B, et al. Nasal polyposis: immunohistochemistry and bioelectrical findings (a hypothesis for the development of nasal polyps). J Allergy Clin Immunol. 1997;99(2):165–175. PubMed: 9042040.
  • Dejima K, Randell SH, Stutts MJ, et al. Potential role of abnormal ion transport in the pathogenesis of chronic sinusitis. Arch Otolaryngol Head Neck Surg. 2006;132(12):1352–1362. PubMed: 17178948.
  • Rogers GA, Den Beste K, Parkos CA, et al. Epithelial tight junction alterations in nasal polyposis. Int Forum Allergy Rhinol. 2011;1(1):50–54. PubMed: 22287308.
  • Meng J, Zhou P, Liu Y, et al. The development of nasal polyp disease involves early nasal mucosal inflammation and remodelling. PLoS One. 2013;8(12):e82373. PubMed: 24340021.
  • Shi L, Lu X, Liu Z, et al. [The expression of E-cadherin and occludin in epithelium of chronic rhinosinositis and its significance]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2012;26(11):499–501, 506. PubMed: 22934337.
  • Li Y, Wang X, Wang R, et al. The expression of epithelial intercellular junctional proteins in the sinonasal tissue of subjects with chronic rhinosinusitis: a histopathologic study. ORL J Otorhinolaryngol Relat Spec. 2014;76(2):110–119. PubMed: 24801627.
  • Jiao J, Wang M, Duan S, et al. Transforming growth factor-β1 decreases epithelial tight junction integrity in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2018;141(3):1160–1163.e9. PubMed: 29132958
  • Kern RC1, Conley DB, Walsh W, et al. Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis. Am J Rhinol. 2008;22(6):549–559. PubMed: 18786300.
  • Zhang N, Van Crombruggen K, Gevaert E, et al. Barrier function of the nasal mucosa in health and type-2 biased airway diseases. Allergy. 2016;71(3):295–307. PubMed: 26606240.
  • Stevens WW, Schleimer RP, Kern RC. Chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol Pract. 2016;4(4): 565–572. PubMed: 27393770.
  • London NR Jr, Tharakan A, Ramanathan M Jr. The role of innate immunity and aeroallergens in chronic rhinosinusitis. Adv Otorhinolaryngol. 2016;79: 69–77. PubMed: 27466848.
  • Henriquez OA, Den Beste K, Hoddeson EK, et al. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions. Int Forum Allergy Rhinol. 2013;3(8):630–635. PubMed: 23592402.
  • London NR Jr, Tharakan A, Lane AP, et al. Nuclear erythroid 2-related factor 2 activation inhibits house dust mite-induced sinonasal epithelial cell barrier dysfunction. Int Forum Allergy Rhinol. 2017;7(5):536–541. PubMed: 28151586.
  • Vinhas R, Cortes L, Cardoso I, et al. Pollen proteases compromise the airway epithelial barrier through degradation of transmembrane adhesion proteins and lung bioactive peptides. Allergy. 2011;66(8):1088–1098. PubMed: 21480927.
  • Tai HY, Tam MF, Chou H, et al. Pen ch 13 allergen induces secretion of mediators and degradation of occludin protein of human lung epithelial cells. Allergy. 2006;61(3):382–388. PubMed: 16436150.
  • Den Beste KA, Hoddeson EK, Parkos CA, et al. Epithelial permeability alterations in an in vitro air-liquid interface model of allergic fungal rhinosinusitis. Int Forum Allergy Rhinol. 2013;3(1):19–25. PubMed: 22927233.
  • Rusznak C, Sapsford RJ, Devalia JL, et al. Cigarette smoke potentiates house dust mite allergen-induced increase in the permeability of human bronchial epithelial cells in vitro. Am J Respir Cell Mol Biol. 1999;20(6):1238–1250. PubMed: 10340943.
  • Rusznak C, Mills PR, Devalia JL, et al. Effect of cigarette smoke on the permeability and IL-1beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2000;23(4):530–536. PubMed: 11017919.
  • Tharakan A, Halderman AA, Lane AP, et al. Reversal of cigarette smoke extract-induced sinonasal epithelial cell barrier dysfunction through Nrf2 activation. Int Forum Allergy Rhinol. 2016 Nov;6:1145–1150. PubMed: 27580429.
  • Hong Z, Guo Z, Zhang R, et al. Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells. Tohoku J Exp Med. 2016;239(2):117–125. PubMed: 27246665.
  • Zhao R, Guo Z, Zhang R, et al. Nasal epithelial barrier disruption by particulate matter ≤2.5 μm via tight junction protein degradation. J Appl Toxicol. 2018;38(5):678–687. PubMed: 29235125.
  • Hariri BM, Cohen NA. New insights into upper airway innate immunity. Am J Rhinol Allergy. 2016;30(5): 319–323. PubMed: 27657896.
  • Rudack C, Steinhoff M, Mooren F, et al. PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium. Clin Exp Allergy. 2007;37(7):1009–1022. PubMed: 17581194.
  • Ossovskaya VS, Bunnett NW. Protease-activated receptors: contribution to physiology and disease. Physiol Rev. 2004;84(2): 579–621. PubMed: 15044683.
  • Malik Z, Roscioli E, Murphy J, et al. Staphylococcus aureus impairs the airway epithelial barrier in vitro. Int Forum Allergy Rhinol. 2015;5(6):551–556. PubMed: 25821008.
  • Murphy J, Ramezanpour M, Stach N, et al. Staphylococcus Aureus V8 protease disrupts the integrity of the airway epithelial barrier and impairs IL-6 production in vitro. Laryngoscope. 2018;128(1):E8–E15. PubMed: 28994126.
  • Altunbulakli C, Costa R, Lan F, et al. Staphylococcus aureus enhances the tight junction barrier integrity in healthy nasal tissue, but not in nasal polyps. J Allergy Clin Immunol. 2018;142(2):665–668.e8. PubMed: 29518417.
  • Nomura K, Obata K, Keira T, et al. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells. Respir Res. 2014;15:21. PubMed: 24548792
  • Li J, Ramezanpour M, Fong SA, et al. Pseudomonas aeruginosa exoprotein-induced barrier disruption correlates with elastase activity and marks chronic rhinosinusitis severity. Front Cell Infect Microbiol. 2019;9:38.
  • Sajjan U, Wang Q, Zhao Y, et al. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am J Respir Crit Care Med. 2008;178(12):1271–1281. PubMed: 18787220.
  • Yeo NK, Jang YJ. Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope. 2010;120(2): 346–352. PubMed: 20013846.
  • Masaki T, Kojima T, Okabayashi T, et al. A nuclear factor-κB signaling pathway via protein kinase C δ regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells. Mol Biol Cell. 2011;22(13):2144–2156. PubMed: 21562222.
  • Shim JM, Kim J, Tenson T, et al. Influenza virus infection, interferon response, viral counter-response, and apoptosis. Viruses. 2017;9(8):pii: E223. PubMed: 28805681.
  • Tian T, Zi X, Peng Y, et al. H3N2 influenza virus infection enhances oncostatin M expression in human nasal epithelium. Exp Cell Res. 2018;371(2):322–329. PubMed: 30142324.
  • Banyer JL, Hamilton NH, Ramshaw IA, et al. Cytokines in innate and adaptive immunity. Rev Immunogenet. 2000;2(3):359–373. [ PubMed: 11256745]
  • Biedermann T, Röcken M, Carballido JM. TH1 and TH2 lymphocyte development and regulation of TH cell-mediated immune responses of the skin. J Investig Dermatol Symp Proc. 2004;9(1): 5–14. PubMed: 14870978.
  • Moro K, Yamada T, Tanabe M, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010;463(7280):540–544. PubMed: 20023630.
  • Shen Y, Tang XY, Yc Y, et al. Impaired balance of Th17/Treg in patients with nasal polyposis. Scand J Immunol. 2011;74(2):176–185. PubMed: 21375554.
  • Wise SK, Laury AM, Katz EH, et al. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression. Int Forum Allergy Rhinol. 2014;4(5):361–370. PubMed: 24510479.
  • Steelant B, Seys SF, Van Gerven L, et al. Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis. J Allergy Clin Immunol. 2018;141(3):951–963.e8. PubMed: 29074456.
  • Ramezanpour M, Moraitis S1, Smith JL2, et al. Th17 cytokines disrupt the airway mucosal barrier in chronic rhinosinusitis. Mediators Inflamm. 2016;2016:9798206. PubMed: 26903715
  • Gazel A, Rosdy M, Bertino B, et al. A characteristic subset of psoriasis-associated genes is induced by oncostatin-M in reconstituted epidermis. J Invest Dermatol. 2006;126(12):2647–2657. PubMed: 16917497.
  • Takata F, Sumi N, Nishioku T, et al. Oncostatin M induces functional and structural impairment of blood-brain barriers comprised of rat brain capillary endothelial cells. Neurosci Lett. 2008;441(2):163–166. PubMed: 18603369.
  • Pothoven KL, Norton JE, Hulse KE, et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J Allergy Clin Immunol. 2015;136(3):737–746.e4. PubMed: 25840724.
  • Pothoven KL, Norton JE, Suh LA, et al. Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease. J Allergy Clin Immunol. 2017;139(6):1966–1978.e9. PubMed: 27993536.
  • Overgaard CE, Schlingmann B, Dorsainvil White S, et al. The relative balance of GM-CSF and TGF-β1 regulates lung epithelial barrier function. Am J Physiol Lung Cell Mol Physiol. 2015;308(12):L1212–1223. PubMed: 25888574.
  • Schamberger AC, Mise N, Jia J, et al. Cigarette smoke-induced disruption of bronchial epithelial tight junctions is prevented by transforming growth factor-β. Am J Respir Cell Mol Biol. 2014;50(6):1040–1052. PubMed: 24358952.
  • Cho HJ, Kim CH. Oxygen matters: hypoxia as a pathogenic mechanism in rhinosinusitis. BMB Rep. 2018;51(2): 59–64. PubMed: 29366441.
  • Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev. 1996;76(3): 839–885. PubMed: 8757790.
  • Min HJ, Kim TH, Yoon JH, et al. Hypoxia increases epithelial permeability in human nasal epithelia. Yonsei Med J. 2015;56(3):825–831. PubMed: 25837192.
  • Zheng J, Wei X, Zhan JB, et al. [High mobility group box1 contributes to hypoxia-induced barrier dysfunction of nasal epithelial cells]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;31(15):1178–1181. PubMed: 29798353.
  • Skrovanek S, DiGuilio K, Bailey R, et al. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol. 2014;5(4):496–513. PubMed: 25400994.
  • Murphy J, Ramezanpour M, Roscioli E, et al. Mucosal zinc deficiency in chronic rhinosinusitis with nasal polyposis contributes to barrier disruption and decreases ZO-1. Allergy. 2018;73(10):2095–2097. PubMed: 29935023.
  • Rostkowska-Nadolska B, Borawska M, Hukalowicz K. Trace elements in nasal polyps. Biol Trace Elem Res. 2005;106(2): 117–121. PubMed: 16116243.
  • Okur E, Gul A, Kilinc M, et al. Trace elements in nasal polyps. Eur Arch Otorhinolaryngol. 2013;270(8):2245–2248. PubMed: 23292037.
  • Fruth K, Goebel G, Koutsimpelas D, et al. Low SPINK5 expression in chronic rhinosinusitis. Laryngoscope. 2012;122(6):1198–1204. PubMed: 22570283.
  • Richer SL, Truong-Tran AQ, Conley DB, et al. Epithelial genes in chronic rhinosinusitis with and without nasal polyps. Am J Rhinol. 2008;22(3):228–234. PubMed: 18588753.
  • Walley AJ, Chavanas S, Moffatt MF, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet. 2001;29(2):175–178. PubMed: 11544479.
  • Briot A, Deraison C, Lacroix M, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med. 2009;206(5):1135–1147. PubMed: 19414552.
  • Descargues P, Deraison C, Bonnart C, et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet. 2005;37(1):56–65. PubMed: 15619623.
  • Kouzaki H, Matsumoto K, Kikuoka H, et al. Endogenous protease inhibitors in airway epithelial cells contribute to eosinophilic chronic rhinosinusitis. Am J Respir Crit Care Med. 2017;195(6):737–747. PubMed: 27779422.
  • Tan BK, Schleimer RP, Kern RC. Perspectives on the etiology of chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg. 2010;18(1): 21–26. PubMed: 19966566.
  • Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33(7): 637–668. PubMed: 11390274.
  • Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis. J Allergy Clin Immunol. 2009;124(1):37–42. PubMed: 19560577.
  • Cho SH, Kim DW, Lee SH, et al. Age-related increased prevalence of asthma and nasal polyps in chronic rhinosinusitis and its association with altered IL-6 trans-signaling. Am J Respir Cell Mol Biol. 2015;53(5):601–606. PubMed: 26266960.
  • Tieu DD, Peters AT, Carter RG, et al. Evidence for diminished levels of epithelial psoriasin and calprotectin in chronic rhinosinusitis. J Allergy Clin Immunol. 2010;125(3):667–675. PubMed: 20226301.
  • Koppelman GH, Meyers DA, Howard TD, et al. Identification of PCDH1 as a novel susceptibility gene for bronchial hyperresponsiveness. Am J Respir Crit Care Med. 2009;180(10):929–935. PubMed: 19729670.
  • Kozu Y, Gon Y, Maruoka S, et al. Protocadherin-1 is a glucocorticoid-responsive critical regulator of airway epithelial barrier function. BMC Pulm Med. 2015;15:80. PubMed: 26227965
  • Gon Y, Maruoka S, Kishi H, et al. NDRG1 is important to maintain the integrity of airway epithelial barrier through claudin-9 expression. Cell Biol Int. 2017;41(7):716–725. PubMed: 28191699.
  • Ramakrishnan VR, Gonzalez JR, Cooper SE, et al. RNA sequencing and pathway analysis identify tumor necrosis factor alpha driven small proline-rich protein dysregulation in chronic rhinosinusitis. Am J Rhinol Allergy. 2017;31(5):283–288. PubMed: 28859701.
  • Khan N1, Asif AR2. Transcriptional regulators of claudins in epithelial tight junctions. Mediators Inflamm. 2015;2015: 219843. PubMed: 25948882.
  • Candi E, Terrinoni A, Rufini A, et al. p63 is upstream of IKK alpha in epidermal development. J Cell Sci. 2006;119(Pt 22):4617–4622. PubMed: 17093266.
  • Carroll DK, Brugge JS, Attardi LD. p63, cell adhesion and survival. Cell Cycle. 2007;6(3): 255–261. PubMed: 17297292.
  • Kaneko Y, Kohno T, Kakuki T, et al. The role of transcriptional factor p63 in regulation of epithelial barrier and ciliogenesis of human nasal epithelial cells. Sci Rep. 2017;7(1):10935. PubMed: 28883651.
  • Ramezanpour M, Murphy J, Jlp S, et al. In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash. Int Forum Allergy Rhinol. 2017 Dec;7:1170–1177. PubMed: 29024522.
  • Gumbiner BM. Breaking through the tight junction barrier. J Cell Biol. 1993;123(6 Pt 2): 1631–1633. PubMed: 8276885.
  • Ramezanpour M, Rayan A, Smith JLP, et al. The effect of topical treatments for CRS on the sinonasal epithelial barrier. Rhinology. 2017;55(2):161–169. PubMed: 28492611.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.