810
Views
26
CrossRef citations to date
0
Altmetric
Review

Immune reconstitution following hematopoietic stem cell transplantation using different stem cell sources

, , &
Pages 735-751 | Received 13 Feb 2019, Accepted 25 Apr 2019, Published online: 09 May 2019

References

  • Podgorny PJ, Pratt LM, Liu Y, et al. Low counts of B cells, natural killer cells, monocytes, dendritic cells, basophils, and eosinophils are associated with post-engraftment infections after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016 Jan;22(1):37–46.
  • Kurata K, Yakushijin K, Mizuno I, et al. Early lymphocyte recovery predicts clinical outcome after HSCT with mycophenolate mofetil prophylaxis in the Japanese population. Int J Hematol. 2018 Jul;108(1):58–65.
  • Castillo N, García-Cadenas I, Díaz-Heredia C, et al. Cord blood units with high CD3(+) cell counts predict early lymphocyte recovery after in vivo T cell-depleted single cord blood transplantation. Biol Blood Marrow Transplant. 2016 Jun;22(6):1073–1079.
  • Berger M, Figari O, Bruno B, et al. Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related mortality. Bone Marrow Transplant. 2008;41:55–62.
  • Kim DH, Sohn SK, Won DI, et al. Rapid helper T-cell recovery above 200 × 10 6/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation. Bone Marrow Transplant. 2006;37(12):1119–1128.
  • Brown JA, Stevenson K, Kim HT, et al. Clearance of CMV viremia and survival after double umbilical cord blood transplantation in adults depends on reconstitution of thymopoiesis. Blood. 2010 May 20;115(20):4111–4119.
  • Duinhouwer LE, Beije N, van der Holt B, et al. Impaired thymopoiesis predicts for a high risk of severe infections after reduced intensity conditioning without anti-thymocyte globulin in double umbilical cord blood transplantation. Bone Marrow Transplant. 2018 Jun;53(6):673–682.
  • Klyuchnikov E, Asenova S, Kern W, et al. Post-transplant immune reconstitution after unrelated allogeneic stem cell transplant in patients with acute myeloid leukemia. Leuk Lymphoma. 2010 August;51(8):1450–1463.
  • Podgorny PJ, Liu Y, Dharmani-Khan P, et al. Immune cell subset counts associated with graft-versus-host disease. Biol Blood Marrow Transplant. 2014 Apr;20(4):450–462.
  • Koehl U, Bochennek K, Zimmermann SY, et al. Immune recovery in children undergoing allogeneic stem cell transplantation: absolute CD8+CD3+ count reconstitution is associated with survival. Bone Marrow Transplant. 2007;39:269–278.
  • Palvetic ZS, Joshi SS, Pirruccello SJ, et al. Lymphocyte reconstitution after allogeneic blood stem cell transplantation for hematologic malignancies. Bone Marrow Transplant. 1998 Jan;21(1):33–41.
  • Fedele R, Martino M, Garreffa C, et al. The impact of early CD4+ lymphocyte recovery on the outcome of patients who undergo allogeneic bone marrow or peripheral blood stem cell transplantation. Blood Transfus. 2012 Apr;10(2):174–180.
  • Bartelink IH, Belitser SV, Knibbe CA, et al. Immune reconstitution kinetics as an early predictor for mortality using various hematopoietic stem cell sources in children. Biol Blood Marrow Transplant. 2013;19:305–313.
  • Haddad E, Logan ER, Griffith LM. SCID genotype and 6-month post-transplant CD4 count predict survival and immune recovery: a PIDTC retrospective study. Blood 2018; 132(17):1737–1749.
  • Weinberg K, Blazar BR, Wagner JE, et al. Factors affecting thymic function after allogeneic hematopoietic stem cell transplantation. Blood. 2001;97(5):1458–1466.
  • Charrier E, Cordeiro P, Brito R-M, et al. Reconstitution of maturating and regulatory lymphocyte subsets after cord blood and BMT in children. Bone Marrow Transplant. 2013;48:376–382.
  • Hauri-Hohl MM, Keller MP, Gill J, et al. Donor T-cell alloreactivityagainst host thymic epithelium limits T-cell development after bone marrow transplantation. Blood. 2007;109:4080–4088.
  • Petersen SL, Ryder LP, Björk P, et al. A comparison of T-, B- and NK-cell reconstitution following conventional or nonmyeloablative conditioning and transplantation with bone marrow or peripheral blood stem cells from human leucocyte antigen identical sibling donors. Bone Marrow Transplant. 2003;32(1):65–72.
  • Abdel-Azim H, Elshoury A, Mahadeo KM, et al. Humoral immune reconstitution kinetics after allogeneic hematopoietic stem cell transplantation in children: a maturation block of IgM memory B cells may lead to impaired antibody immune reconstitution. Biol Blood Marrow Transplant. 2017 Sep;23(9):1437–1446.
  • Purton JF, Monk JA, Liddicoat DR, et al. Expression of the glucocorticoid receptor from the 1A promoter correlates with T lymphocyte sensitivity to glucocorticoid-induced cell death. J Immunol. 2004;173:3816–3824.
  • Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function. Annu Rev Immunol. 2000;18:309–345.
  • Storek J, Dawson MA, Storer B, et al. Immune reconstitution after allogeneic marrow transplantation compared with blood stem cell transplantation. Blood. 2001;97(11):3380–3389.
  • Renard C, Barlogis V, Mialou V, et al. Lymphocyte subset reconstitution after unrelated cord blood or bone marrow transplantation in children. Br J Haematol. 2011;152:322–330.
  • Jacobson CA, Turki AT, McDonough SM, et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant. 2011;18:565–574.
  • Gratwohl A 1, Baldomero H, Schmid O, et al. Change in stem cell source for hematopoietic stem cell transplantation (HSCT) in Europe: a report of the EBMT activity survey 2003. Bone Marrow Transplant. 2005 Oct;36(7):575–590.
  • Pechumer H, Leinisch E, Bender-Gotze C, et al. Recovery of monocytes after bone marrow transplantation-rapid reappearance of tumor necrosis factor alpha and interleukin 6 production. Transplantation. 1991;52(4):698–704.
  • Rommeley M, Spies-Weisshart B, Schilling K, et al. Reconstitution and functional analyses of neutrophils and distinct subsets of monocytes after allogeneic stem cell transplantation. J Cancer Res Clin Oncol. 2011;137(9):1293–1300.
  • To LB, Haylock DN, Dyson PG, et al. An unusual pattern of hemopoietic reconstitution in patients with acute myeloid leukemia transplanted with autologous recovery phase peripheral blood. Bone Marrow Transplant. 1990;6(2):109–114.
  • Oza A, Hallemeier C, Goodnough L, et al. Granulocyte—colony-stimulating factor—mobilized prophylactic granulocyte transfusions given after allogeneic peripheral blood progenitor cell transplantation result in a modest reduction of febrile days and intravenous antibiotic usage. Transfusion. 2006;46(1):14–23.
  • Arpinati M, Chirumbolo G, Urbini B, et al. Role of plasmacytoid dendritic cells in immunity and tolerance after allogeneic hematopoietic stem cell transplantation. Transplant Immunol. 2003;11:345–356.
  • Auffermann-Gretzinger S, Lossos IS, Vayntrub TA, et al. Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients. Blood. 2002;99(4):1442–1448.
  • Chklovskaia E, Nowbakht P, Nissen C, et al. Reconstitution of dendritic and natural killer-cell subsets after allogeneic stem cell transplantation: effects of endogenous flt3 ligand. Blood. 2004;103(10):3860–3868.
  • Porta MD, Rigolin GM, Alessandrino EP, et al. Dendritic cell recovery after allogeneic stem-cell transplantation in acute leukemia: correlations with clinical and transplant characteristics. Eur J Haematol. 2004;72(1):18–25.
  • Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol. 2015;15:471–485.
  • Vivier E, Raulet DH, Moretta A, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011 Jan 7;331(6013):44–49.
  • Pende D, Marcenaro S, Falco M, et al. Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and re-definition of inhibitory KIR specificity. Blood. 2009;113(13):3119–3129.
  • Dulphy N, Haas P, Busson M, et al. An unusual CD56bright CD16low NK cell subset dominates the early post-transplant period following HLA-matched hematopoietic stem cell transplantation. J Immunol. 2008;181(3):2227–2237.
  • Kroger N, Zagrivnaja M, Schwartz S, et al. Kinetics of plasma-cell chimerism after allogeneic stem cell transplantation by highly sensitive real-time PCR based on sequence polymorphism and its value to quantify minimal residual disease in patients with multiple myeloma. Exp Hematol. 2006;34(5):688–694.
  • Mackall C, Fry T, Gress R, et al. Background to hematopoietic cell transplantation, including post-transplant immune recovery. Bone Marrow Transplant. 2009;44(8):457–462.
  • Marie-Cardine A, Divay F, Dutot I, et al. Transitional B cells in humans: characterization and insight from B lymphocyte reconstitution after hematopoietic stem cell transplantation. Clin Immunol. 2008;127(1):14–25.
  • Avanzini MA, Locatelli F, Dos Santos C, et al. B lymphocyte reconstitution after hematopoietic stem cell transplantation: functional immaturity and slow recovery of memory CD27+ B cells. Exp Hematol. 2005;33(4):480–486.
  • D’Orsogna LJ, Wright MP, Krueger RG, et al. Allogeneic hematopoietic stem cell transplantation recipients have defects of both switched and IgM memory B cells. Biol Blood Marrow Transplant. 2009;15(7):795–803.
  • Suzuki I, Milner EC, Glas AM, et al. Immunoglobulin heavy chain variable region gene usage in bone marrow transplant recipients: lack of somatic mutation indicates a maturational arrest. Blood. 1996;87(5):1873–1880.
  • Storek J, King L, Ferrara S, et al. Abundance of a restricted fetal B cell repertoire in marrow transplant recipients. Bone Marrow Transplant. 1994;14(5):783–790.
  • Peggs KS, Mackinnon S. Immune reconstitution following haematopoietic stem cell transplantation. Br J Haematol. 2004 Feb;124(4):407–420.
  • Körbling M, Anderlini P. Peripheral blood stem cell versus bone marrow allo-transplantation: does the source of hematopoietic stem cells matter? Blood. 2001 Nov 15;98(10):2900–2908.
  • Cuthbert R, Iqbal A, Gates A, et al. Functional hyposplenism following allogeneic bone marrow transplantation. J Clin Pathol. 1995;48:257–259.
  • Engelhard D, Cordonnier C, Shaw P, et al. Early and late invasive pneumococcal infection following stem cell transplantation: a European Bone Marrow Transplantation Survey. Br J Haematol. 2002;117:444–450.
  • Elias M, Bisharat N, Goldstein L, et al. Pneumococcal sepsis because of functional hyposplenism in a bone marrow transplant patient. Eur J Clin Microbiol Infect Dis. 2004;23:212–214.
  • Mackall CL, Fry TJ, Bare C, et al. IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood. 2001;97(5):1491–1497.
  • Bolton HA, Zhu E, Terry AM, et al. Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease. J Clin Invest. 2015;125(9):3627–3641.
  • Dumont-Girard F, Roux E, van Lier RA, et al. Reconstitution of the T-cell compartment after bone marrow transplantation: restoration of the repertoire by thymic emigrants. Blood. 1998;92(11):4464–4471.
  • Dulude G, Brochu S, Fontaine P, et al. Thymic and extra-thymic differentiation and expansion of T lymphocytes following bone marrow transplantation in irradiated recipients. Exp Hematol. 1997;25:882–1004.
  • Hick RW, Gruver AL, Ventevogel MS, et al. Leptin selectively augments thymopoiesis in leptin deficiency and lipopolysaccharide-induced thymic atrophy. J Immunol. 2006;177:169–176.
  • Mocarski ES, Bonyhadi M, Salimi S, et al. Human cytomegalovirus in a SCID-hu mouse: thymic epithelial cells are prominent targets of viral replication. Proc Natl Acad Sci USA. 1993;90:104–108.
  • Stern L, McGuire H, Avdic S, et al. Mass cytometry for the assessment of immune reconstitution after hematopoietic stem cell transplantation. Front Immunol. 2018 Jul;26(9):1672.
  • Klein AK, Patel DD, Gooding ME, et al. T-cell recovery in adults and children following umbilical cord blood transplantation. Biol Blood Marrow Transplant. 2001;7:454–466.
  • Ogonek J, Kralj Juric M, Ghimire S, et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2016;7:507.
  • Young J-A, Logan BR, Wu J, et al. Infections following transplantation of bone marrow or peripheral-blood stem cells from unrelated donors. Biol Blood Marrow Transplant. 2016;22(2):359–370.4.
  • Mulanovich VE, Jiang Y, de Lima M, et al. Infectious complications in cord blood and T-cell depleted haploidentical stem cell transplantation. Am J Blood Res. 2011;1(1):98–105.
  • Hamza NS, Lisgaris M, Yadavalli G, et al. Kinetics of myeloid and lymphocyte recovery and infectious complications after unrelated umbilical cord blood versus HLA-matched unrelated donor allogeneic transplantation in adults. Br J Haematol. 2004;124(4):488–498.
  • Parody R, Martino R, Rovira M, et al. Severe infections after unrelated donor allogeneic hematopoietic stem cell transplantation in adults: comparison of cord blood transplantation with peripheral blood and bone marrow transplantation. Biol Blood Marrow Transplant. 2006;12(7):734–748.
  • Kurt B, Flynn P, Shenep JL, et al. Prophylactic antibiotics reduce morbidity due to septicemia during intensive treatment for paediatric acute myeloid leukaemia. Cancer. 2008;113(2):376–382.
  • Wagner JE Jr, Eapen M, Carter S, et al. Blood and Marrow Transplant Clinical Trials Network. One-unit versus two-unit cord-blood transplantation for hematologic cancers. N Engl J Med. 2014;371(18):1685–1694.
  • Wagner JE Jr, Eapen M, Kurtzberg J. One-unit versus two-unit cord-blood transplantation. N Engl J Med. 2015;372(3):288.
  • Wagner JE Jr, Brunstein CG, Boitano AE, et al. Phase I/II trial of stemregenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell. 2016;18(1):144–155.
  • Anand S, Thomas S, Hyslop T, et al. Transplantation of ex vivo expanded umbilical cord blood (NiCord) decreases early infection and hospitalization. Biol Blood Marrow Transplant. 2017;23(7):1151–1157.
  • Kim YJ, Broxmeyer HE. Immune regulatory cells in umbilical cord blood and their potential roles in transplantation tolerance. Crit Rev Oncol Hematol. 2011;79(2):112–126.
  • Crespo I, Paiva A, Couceiro A, et al. Immunophenotypic and functional characterization of cord blood dendritic cells. Stem Cells Dev. 2004;13:63–70.
  • Haas P, Loiseau P, Tamouza R, et al. NK-cell education is shaped by donor HLA genotype after unrelated allogeneic hematopoietic stem cell transplantation. Blood. 2010;117:1021–1029.
  • Cooley S, Xiao F, Pitt M, et al. A subpopulation of human peripheral blood NK cells that lacks inhibitory receptors for self-MHC is developmentally immature. Blood. 2007;110:578–586.
  • Gaddy J, Broxmeyer HE. Cord blood CD16+56− cells with low lytic activity are possible precursors of mature natural killer cells. Cell Immunol. 1997;180:132–142.
  • Fan YY, Yang BY, Wu CY. Phenotypic and functional heterogeneity of natural killer cells from umbilical cord blood mononuclear cells. Immunol Invest. 2008;37:79–96.
  • Dalle J-H, Menezes J, Wagner E, et al. Characterization of cord blood natural killer cells: implications for transplantation and neonatal infections. Pediatr Res. 2005;57:649–655.
  • Wang Y, Xu H, Zheng X, et al. High expression of NKG2A/CD94 and low expression of granzyme B are associated with reduced cord blood NK cell activity. Cell Mol Immunol. 2007;4:377–382.
  • Milano F, Gooley T, Wood B, et al. Cord-blood transplantation in patients with minimal residual disease. N Engl J Med. 2016;375:944–953.
  • Eapen M, Logan BR, Confer DL, et al. Peripheral blood grafts from unrelated donors are associated with increased acute and chronic graft-versus-host disease without improved survival. Biol Blood Marrow Transplant. 2007 Dec;13(12):1461–1468.
  • Servais S, Lengline E, Porcher R, et al. Long-term immune reconstitution and infection burden after mismatched hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(4):507–517.
  • Sarantopoulos S, Ritz J. Aberrant B-cell homeostasis in chronic GvHD. Blood. 2015;125:1703–1707.
  • Sarantopoulos S, Blazar BR, Cutler C, et al. B cells in chronic graft-versus-host disease. sBiol Blood Marrow Transplant. 2015;21:16–23.
  • Lapierre V, Oubouzar N, Auperin A. et al. Influence of the hematopoietic stem cell source on early immuno-hematologic reconstitution after allogeneic transplantation. Blood. 2001;97:2580–2586.
  • Novitzky N, Davison GM, Hale G, et al. Immune reconstitution at 6 months following T-cell depleted hematopoietic stem cell transplantation is predictive for treatment outcome. Transplantation. 2002 Dec 15;74(11):1551–1559.
  • Storek J, Wells D, Dawson MA, et al. Factors influencing B lymphopoiesis after allogeneic hematopoietic cell transplantation. Blood. 2001;98(2):489–491.
  • Tayebi H 1, Lapierre V, Saas P, et al. Enhanced activation of B cells in a granulocyte colony-stimulating factor-mobilized peripheral blood stem cell graft. Br J Haematol. 2001;114(3):698–700.
  • Meisel R, Klingebiel T, Dilloo D, et al. Peripheral blood stem cells versus bone marrow in pediatric unrelated donor stem cell transplantation. Blood. 2013 31;121(5):863–865.
  • Luo X-H, Chang Y-J, Huang X-J. Improving cytomegalovirus-specific T cell reconstitution after haploidentical stem cell transplantation. J Immunol Res. 2014;2014:12.
  • Cwynarski K, Ainsworth J, Cobbold M, et al. Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood. 2001;97(5):1232–1240.
  • Jansen J, Hanks S, Thompson JM, et al. Transplantation of hematopoietic stem cells from the peripheral blood. J Cell Mol Med. 2005;9(1):37–50.
  • Holtick U, Albrecht M, Chemnitz JM, et al. Comparison of bone marrow versus peripheral blood allogeneic hematopoietic stem cell transplantation for hematological malignancies in adults - a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2015;94(2):179–188.
  • Stem Cell Trialists’ Collaborative Group. Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol. 2005;23(22):5074–5087.
  • Sirinoglu Demiriz I, Tekgunduz E, Altuntas F. What is the most appropriate source for hematopoietic stem cell transplantation? Peripheral stem cell/bone marrow/cord blood. Bone Marrow Res. 2012;2012:834040.
  • Fan Q, Liu H, Liang X, et al. Superior GVHD-free, relapse-free survival for G-BM to G-PBSC grafts is associated with higher MDSCs content in allografting for patients with acute leukemia. J Hematol Oncol. 2017 Jul 4;10(1):135.
  • Castillo N, García-Cadenas I, Barba P, et al. Early and long-term impaired T lymphocyte immune reconstitution after cord blood transplantation with antithymocyte globulin. Biol Blood Marrow Transplant. 2017 Mar;23(3):491–497.
  • Chiesa R, Gilmour K, Qasim W, et al. Omission of in vivo T-cell depletion promotes rapid expansion of naive CD4+ cord blood lymphocytes and restores adaptive immunity within 2 months after unrelated cord blood transplant. Br J Haematol. 2012;156(5):656–666.
  • Sauter C, Abboud M, Jia X, et al. Serious infection risk and immune recovery after double-unit cord blood transplantation without antithymocyte globulin. Biol Blood Marrow Transplant. 2011;17:1460–1471.
  • Elfeky R, Furtado-Silva JM, Chiesa R, et al. Umbilical cord blood transplantation without in vivo T-cell depletion for children with MHC class II deficiency. J Allergy Clin Immunol. 2018 Jun;141(6):2279–2282.e2.
  • Admiraal R, van Kesteren C, Jol-van der Zijde CM, et al. Association between anti-thymocyteglobulin exposure and CD4+ immune reconstitution in paediatric haemopoietic cell transplantation: a multicentre, retrospective pharmacodynamic cohort analysis. Lancet Haematol. 2015 May;2(5):194–203.
  • Admiraal R, van Kesteren C, Jol-van der Zijde CM, et al. Population pharmacokinetic modeling of thymoglobulin in children receiving allogeneic-hematopoietic cell transplantation: towards improved survival through individualized dosing. Clin Pharmacokinet. 2015;54:435–446.
  • Lane JP, Evans PTG, Nademi Z, et al. Low dose serotherapy improves early immune reconstitution after cord blood transplantation for primary immunodeficiencies. Biol Blood Marrow Transplant. 2014;20(2):243–249.
  • Hiwarkar P, Hubank M, Qasim W, et al. Cord blood transplantation recapitulates fetal ontogeny with a distinct molecular signature that supports CD4+ T-cell reconstitution. Blood Adv. 2017 Nov 2;1(24):2206–2216.
  • Hough R, Danby R, Russell N, et al. Recommendations for a standard UK approach to incorporating umbilical cord blood into clinical transplantation practice: an update on cord blood unit selection, donor selection algorithms and conditioning protocols. Br J Haematol. 2016 Feb;172(3):360–370.
  • McCurdy SR, Kanakry JA, Showel MM, et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose post-transplantation cyclophosphamide. Blood. 2015;125(19):3024–3031.
  • Aversa F, Terenzi A, Tabilio A, et al. Full haplotype-mismatchedhematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23(15):3447–3454.
  • Brunstein CG, Fuchs EJ, Carter SL, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118(2):282–288.
  • Metheny L, de Lima M. Hematopoietic stem cell transplant with HLA-mismatched grafts: impact of donor, source, conditioning, and graft versus host disease prophylaxis. Expert Rev Hematol. 2019;12(1):47–60.
  • Luznik L, Jalla S, Engstrom LW, et al. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and post-transplantation cyclophosphamide. Blood. 2001 Dec 1;98(12):3456–3464.
  • O‘Donnell PV, Luznik L, Jones RJ, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using post transplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8(7):377–386.
  • Shah RM, Elfeky R, Nademi Z, et al. T-cell receptor αβ+ and CD19+ cell-depleted haploidentical and mismatched hematopoietic stem cell transplantation in primary immune deficiency. J Allergy Clin Immunol. 2018 Apr;141(4):1417–1426.
  • Bertaina A, Merli P, Rutella S, et al. HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders. Blood. 2014 Jul 31;124(5):822–826.
  • Balashov D, Shcherbina A, Maschan M, et al. Single-center experience of unrelated and haploidentical stem cell transplantation with TCRαβ and CD19 depletion in children with primary immunodeficiency syndromes. Biol Blood Marrow Transplant. 2015 Nov;21(11):1955–1962.
  • Im HJ, Koh KN, Seo JJ. Recent advances in haploidentical hematopoietic stem cell transplantation using ex vivo T cell-depleted graft in children and adolescents. Blood Res. 2016 Mar;51(1):8–16.
  • Locatelli F, Merli P, Pagliara D, et al. Outcome of children with acute leukemia given HLA-haploidentical HSCT after αβ T-cell and B-cell depletion. Blood. 2017 Aug 3;130(5):677–685.
  • Jaiswal SR, Chakrabarti A, Chatterjee S, et al. Haploidentical transplantation in children with unmanipulated peripheral blood stem cell graft: the need to look beyond post-transplantation cyclophosphamide in younger children. Pediatr Transplant. 2016 Aug;20(5):675–682.
  • Neven B, Diana JS, Castelle M, et al. Haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide for primary immunodeficiencies and inherited disorders in children. Biol Blood Marrow Transplant. 2019 Mar 12. pii: S1083-8791(19)30184-3. doi: 10.1016/j.bbmt.2019.03.009. [Epub ahead of print]
  • Tian DM, Wang Y, Zhang XH, et al. Rapid recovery of CD3+CD8+ T cells on day 90 predicts superior survival after unmanipulated haploidentical blood and marrow transplantation. PLoS One. 2016 Jun 8;11(6):e0156777.
  • Bondanza A, Ruggeri L, Noviello M, et al. EBMT Cell Therapy and Immunobiology Working Party. Beneficial role of CD8+ T-cell reconstitution after HLA-haploidentical stem cell transplantation for high-risk acute leukaemias: results from a clinico-biological EBMT registry study mostly in the T-cell-depleted setting. Bone Marrow Transplant. 2018 Dec 7. doi: 10.1038/s41409-018-0351-x. [Epub ahead of print]
  • Russo A, Oliveira G, Berglund S, et al. NK cell recovery after haploidentical HSCT with posttransplant cyclophosphamide: dynamics and clinical implications. Blood. 2018 Jan 11;131(2):247–262.
  • Crocchiolo R, Bramanti S, Vai A, et al. Infections after T-replete haploidentical transplantation and high-dose cyclophosphamide as graft-versus-host disease prophylaxis. Transpl Infect Dis. 2015 Apr;17(2):242–249.
  • Finke J, Brugger W, Bertz H, et al. Allogeneic transplantation of positively selected peripheral blood CD34+ progenitor cells from matched related donors. Bone Marrow Transplant. 1996 Dec;18(6):1081–1086.
  • Handgretinger R, Klingebiel T, Lang P, et al. Megadose transplantation of purified peripheral blood CD34(+) progenitor cells from HLA-mismatched parental donors in children. Bone Marrow Transplant. 2001 Apr;27(8):777–783.
  • Elfeky R, Shah RM, Unni MNM, et al. New graft manipulation strategies improve the outcome of mismatched stem cell transplantation in children with primary immunodeficiencies. J Allergy Clin Immunol. 2019 Feb 4. pii: S0091-6749(19)30187-3. doi: 10.1016/j.jaci.2019.01.030. [Epub ahead of print]
  • Uppuluri R, Sivasankaran M, Patel S, et al. Haploidentical stem cell transplantation with post-transplant cyclophosphamide for primary immune deficiency disorders in children: challenges and outcome from a tertiary care center in South India. J Clin Immunol. 2019 Feb;39(2):182–187.
  • Abboud R, Keller J, Slade M, et al. Severe cytokine-release syndrome after T cell replete peripheral blood haploidentical DonorTransplantation is associated with poor survival and anti-IL-6 therapy is safe and well tolerated. Biol Blood Marrow Transplant. 2016 Oct;22(10):1851–1860.
  • Crocchiolo R, Esterni B, Castagna L, et al. Two days of antithymocyte globulin are associated with a reduced incidence of acute and chronic graft-versus-host disease in reduced-intensity conditioning transplantation for hematologic diseases. Cancer. 2013;119:986–992.
  • Remberger M, Ringdén O, Hägglund H, et al. A high antithymocyte globulin dose increases the risk of relapse after reduced intensity conditioning HSCT with unrelated donors. Clin Transplant. 2013;27:E368–74.
  • Lundin J, Osterborg A, Brittinger G, et al. CAMPATH-1H monoclonal antibody in therapy for previously treated low-grade non-Hodgkin’s lymphomas: a phase II multicenter study. European Study Group of CAMPATH-1H Treatment in Low-Grade Non-Hodgkin’s Lymphoma. J Clin Oncol. 1998;16:3257–3263.
  • de Koning C, Admiraal R, Nierkens S, et al. Immune reconstitution and outcomes after conditioning with anti-thymocyte-globulin in unrelated cord blood transplantation; the good, the bad, and the ugly. Stem Cell Investig. 2017 May 16;4:38.
  • Veys P, Wynn RF, Ahn KW, et al. Impact of immune modulation with in vivo T-cell depletion and myleoablative total body irradiation conditioning on outcomes after unrelated donor transplantation for childhood acute lymphoblastic leukemia. Blood. 2012;119:6155–6161.
  • Kanda J, Lopez RD, Rizzieri DA. Alemtuzumab for the prevention and treatment of graft-versus-host disease. Int J Hematol. 2011;93:586–593.
  • Myers GD, Krance RA, Weiss H, et al. Adenovirus infection rates in pediatric recipients of alternate donor allogeneic bone marrow transplants receiving either antithymocyte globulin (ATG) or alemtuzumab (Campath). Bone Marrow Transplant. 2005;36:1001–1008.
  • Storek J. Impact of serotherapy on immune reconstitution and survival outcomes after stem cell transplantations in children: thymoglobulin versus alemtuzumab. Biol Blood Marrow Transplant. 2015;21(3):385–386.
  • Willemsen, L, Jol-van der Zijde C.M., Admiraal, R, et al. Impact of serotherapy on immune reconstitution and survival outcomes after stem cell transplantations in children: thymoglobulin versus alemtuzumab. Biol Blood Marrow Transplant. 2015;21:473–482.
  • EBMT/ESID guidelines for haematopoietic stem cell transplantation. 2017. [cited 2019 Apr 06]. Available from: https://www.ebmt.org/sites/default/files/migration_legacy_files
  • Marsh RA, Fukuda T, Emoto C, et al. Pre-transplant absolute lymphocyte counts impact the pharmacokinetics of alemtuzumab. Biol Blood Marrow Transplant. 2017 Apr;23(4):635–641.
  • Haddad E, Logan BR, Griffith LM, et al. CID genotype and 6-month post-transplant CD4 count predict survival and immune recovery. Blood. 2018 Oct 25;132(17):1737–1749.
  • Wikell H, Ponandai-Srinivasan S, Mattsson J, et al. Cord blood graft composition impacts the clinical outcome of allogeneic stem cell transplantation. Transpl Infect Dis. 2014 Apr;16(2):203–212.
  • Nakasone H, Tabuchi K, Uchida N, et al. Which is more important for the selection of cord blood units for haematopoietic cell transplantation: the number of CD34-positive cells or total nucleated cells? Br J Haematol. 2019 Apr;185(1):166–169.
  • Shpall EJ, Quinones R, Giller R, et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant. 2002;8:368–376.
  • Mehta RS, Rezvani K, Olson A, et al. Novel techniques for ex vivo expansion of cord blood: clinical trials. Front Med (Lausanne). 2015;2:89.
  • Horwitz ME, Chao NJ, Rizzieri DA, et al. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest. 2014;124:3121–3128.
  • Montesinos P, Peled T, Landau E, et al. StemEx®(copper chelation based) ex vivo expanded umbilical cord blood stem cell transplantation (UCBT) accelerates engraftment and improves 100 day survival in myeloablated patients compared to a registry cohort undergoing double unit UCBT: results of a multicenter study of 101 patients with hema-tological malignancies. Blood. 2013;122:295. ASH annual Meeting Abstracts 2013.
  • Wagner JE, Brunstein C, McKenna D, et al. StemRegenin-1 (SR1) expansion culture abrogates the engraftment barrier associated with umbilical cord blood transplantation (UCBT). Blood. 2014;124:728.
  • Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28:875–884.
  • Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood. 1991;78:55–62.
  • de Lima M, McNiece I, Robinson SN, et al. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med. 2012;367:2305–2315.
  • Admiraal R, Lindemans CA, van Kesteren C, et al. Excellent T-cell reconstitution and survival provided ATG exposure is low or absent after pediatric cord blood transplantation. Blood. 2016;128:2734–2741.
  • Zvyagin IV, Mamedov IZ, Tatarinova OV, et al. Tracking T-cell immune reconstitution after TCRαβ/CD19-depleted hematopoietic cells transplantation in children. Leukemia. 2017 May;31(5):1145–1153.
  • Kharya G, Nademi Z, Leahy TR, et al. Haploidentical T-cell alpha beta receptor and CD19-depleted stem cell transplant for Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2014 Nov;134(5):1199–1201.
  • Maschan M, Shelikhova L, Ilushina M, et al. TCR alpha/beta and CD19 depletion and treosulfanbased conditioning regimen in unrelated and haploidentical transplantation in children with acute myeloid leukemia. Bone Marrow Transplant. 2016 May;51(5):668–674.
  • Martelli MF, Di Ianni M, Ruggeri L, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014 Jul 24;124(4):638–644.
  • Danby R, Rocha V. Improving engraftment and immune reconstitution in umbilical cord blood transplantation. Front Immunol. 2014 Feb;24(5):68.
  • Laberko A, Bogoyavlenskaya A, Shelikhova L, et al. Risk factors for and the clinical impact of cytomegalovirus and epstein-barr virus infections in pediatric recipients of TCR-α/β- and CD19-depleted grafts. Biol Blood Marrow Transplant. 2017 Mar;23(3):483–490.
  • Algeri M, Merli P, Qasim W, et al. Administration of BPX-501 Cells Following αβ T and B-Cell-Depleted HLA-Haploidentical HSCT (haplo-HSCT) in Children with Malignant or Non-Malignant Disorders 60th American Society of Hematology Annual Meeting (ASH 2018). San Diego, CA.
  • Elfeky R, Jacobsohn D, Agarwal-Hashmi R, et al. Administration of Rimiducid Following Haploidentical BPX-501 Cells in Children with Malignant or Non-Malignant Disorders Who Develop Graft-versus-Host-Disease (GvHD) 60th American Society of Hematology Annual Meeting (ASH 2018). San Diego, CA.
  • Peggs KS, Verfeurthe S, Pizzey A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 2003;362:1375–1377.
  • Qian C, Wang Y, Reppel L. Viral-specific T-cell transfer from HSCT donor for the treatment of viral infections or diseases after HSCT. Bone Marrow Transplant. 2018;53:114–122.
  • Feucht J, Opherk K, Lang P, et al. Adoptive T-cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood. 2015;125:1986–1994.
  • Styczynski J, van der Velden W, Fox CP, et al. Management of Epstein - Barr virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation: sixth European Conference on Infections in Leukemia (ECIL-6) guidelines. Haematologica. 2016;101:803–811.
  • Qasim W, Derniame S, Gilmour K, et al. Third-party virus-specific T cells eradicate adenoviraemia but trigger bystander graft-versus-host disease: correspondence. Br J Haematol. 2011;154:150–153.
  • Leen AM, Bollard CM, Mendizabal AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood. 2013;121:5113–5123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.