415
Views
26
CrossRef citations to date
0
Altmetric
Review

An update on pathogenesis of psoriatic arthritis and potential therapeutic targets

, , , , , , ORCID Icon, , & show all
Pages 823-836 | Received 07 Feb 2019, Accepted 03 Jun 2019, Published online: 11 Jun 2019

References

  • Gladman DD, Antoni C, Mease P, et al. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann Rheum Dis. 2005;64:14–17.
  • Chimenti MS, Triggianese P, Nuccetelli M, et al. Auto-reactions, autoimmunity and psoriatic arthritis. Autoimmun Rev. 2015;14:1142–1146.
  • Moll JM, Wright V. Familial occurrence of psoriatic arthritis. Ann Rheum Dis. 1973;32:181–201.
  • Chimenti MS, Ballanti E, Perricone C, et al. Immunomodulation in psoriatic arthritis: focus on cellular and molecular pathways. Autoimmun Rev. 2013;12:599–606.
  • Pica F, Chimenti MS, Gaziano R, et al. Serum thymosin α 1 levels in patients with chronic inflammatory autoimmune diseases. Clin Exp Immunol. 2016;186:39–45.
  • Diani M, Altomare G, Reali E. T cell responses in psoriasis and psoriatic arthritis. Autoimmun Rev. 2015;14(4):286–292.
  • Dolcino M, Lunardi C, Ottria A, et al. Crossreactive autoantibodies directed against cutaneous and joint antigens are present in psoriatic arthritis. PLoS ONE. 2014;16:e115424.
  • Ritchlin CT, Colbert RA, Gladman DD. Psoriatic Arthritis. N Engl J Med. 2017;376:957–970.
  • Chimenti MS, Triggianese P, Botti E, et al. S100A8/A9 in psoriatic plaques from patients with psoriatic arthritis. J Int Med Res. 2016;44(1 suppl):33–37.
  • Ballanti E, Perricone C, Greco E, et al. Complement and autoimmunity. Immunol Res. 2013;56:477–491.
  • Dalbeth N, Pool B, Smith T, et al. Circulating mediators of bone remodeling in psoriatic arthritis: implications for disordered osteoclastogenesis and bone erosion. Arthritis Res Ther. 2010;12(4):R164.
  • Breban M. Genetics of spondyloarthritis. Best Pract Res Clin Rheumatol. 2006;20(3):593–599.
  • Greb JE, Goldminz AM, Elder JT, et al. Psoriasis. Nat Rev Dis Prim. 2016;2:16082.
  • Bowes J, Budu-Aggrey A, Huffmeier U, et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat Commun. 2015;6:6046.
  • Stuart PE, Nair RP, Tsoi LC, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet. 2015;97:816–836.
  • Jadon DR, Sengupta R, Nightingale A, et al. Axial disease in psoriatic arthritis study: defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. Ann Rheum Dis. 2017 Apr;76(4):701–707.
  • Winchester R, Minevich G, Steshenko V, et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. 2012;64:1134–1144.
  • Haroon M, Winchester R, Giles JT, et al. Clinical and genetic associations of radiographic sacroiliitis and its different patterns in psoriatic arthritis. Clin Exp Rheumatol. 2017;35:270–276.
  • Cubino N, Montilla C, Usategui-Martín R, et al. Association of IL1Β (−511 A/C) and IL6 (−174 G > C) polymorphisms with higher disease activity and clinical pattern of psoriatic arthritis. Clin Rheumatol. 2016;35(7):1789–1794.
  • Berinstein J, Pollock R, Pellett F, et al. Association of variably expressed KIR3dl1 alleles with psoriatic disease. Clin Rheumatol. 2017;36(10):2261–2266.
  • Eder L, Abji F, Rosen CF, et al. The association of HLA-class I genes and the extent of atherosclerotic plaques in patients with psoriatic disease. J Rheumatol. 2016;43:1844–1851.
  • Jadon D, Tillett W, Wallis D, et al. Exploring ankylosing spondylitis-associated ERAP1, IL23R and IL12B gene polymorphisms in subphenotypes of psoriatic arthritis. Rheumatology (Oxford). 2013;52(2):261–266.
  • Bojko A, Ostasz R, Białecka M, et al. IL12B, IL23A, IL23R and HLA-C*06 genetic variants in psoriasis susceptibility and response to treatment. Hum Immunol. 2018;79:213–217.
  • López de Castro JA. How ERAP1 and ERAP2 shape the peptidomes of disease-associated MHC-I proteins. Front Immunol. 2018;9:2463.
  • Chandran V, Bull SB, Pellett FJ, et al. Killer-cell immunoglobulin-like receptor gene polymorphisms and susceptibility to psoriatic arthritis. Rheumatology (Oxford). 2014;53:233–239.
  • Lambert S, Swindell WR, Tsoi LC, et al. Dual role of Act1 in keratinocyte differentiation and host defense: TRAF3IP2 silencing alters keratinocyte differentiation and inhibits IL-17 responses. J Invest Dermatol. 2017;137(7):1501–1511.
  • Giardina E, Hüffmeier U, Ravindran J, et al. Tumor necrosis factor promoter polymorphism TNF*-857 is a risk allele for psoriatic arthritis independent of the PSORS1 locus. Arthritis Rheum. 2011;63(12):3801–3806.
  • Apel M, Uebe S, Bowes J, et al. Variants in RUNX3 contribute to susceptibility to psoriatic arthritis, exhibiting further common ground with ankylosing spondylitis. Arthritis Rheum. 2013;65(5):1224–1231.
  • Yukinori O, Buhm H, Lam CT, et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet. 2014;95(2):162–172.
  • McGonagle D, Aydin SZ, Gül A, et al. ‘MHC-I-opathy’-unified concept for spondyloarthritis and behçet disease. Nat Rev Rheumatol. 2015;11(12):731–740.
  • Song GG, Kim JH, Lee YH. Associations between the major histocompatibility complex class I chain-related gene A transmembrane (MICA-TM) polymorphism and susceptibility to psoriasis and psoriatic arthritis: a meta-analysis. Rheumatol Int. 2014;34:117–123.
  • Chandran V, Bull SB, Pellett FJ, et al. Human leukocyte antigen alleles and susceptibility to psoriatic arthritis. Hum Imm. 2013;74(10):1333–1338.
  • Pollock R, Chandran V, Barrett J, et al. Differential major histocompatibility complex class I chain-related A allele associations with skin and joint manifestations of psoriatic disease. Tissue Antigens. 2011;77:554–561.
  • Huffmeier U, Mossner R. Complex role of TNF variants in psoriatic arthritis and treatment response to anti-TNF therapy: evidence and concepts. J Investig Dermatol. 2014;134:2483–2485.
  • Karam RA, Zidan HE, Khater MH. Polymorphisms in the TNF- α and IL-10 gene promoters and risk of psoriasis and correlation with disease severity. Cytokine. 2014;66:101–105.
  • Rahman P, Siannis F, Butt C, et al. TNFalpha polymorphisms and risk of psoriatic arthritis. Ann Rheum Dis. 2006;65:919–923.
  • Reich K, Hüffmeier U, König IR, et al. TNF polymorphisms in psoriasis: association of psoriatic arthritis with the promoter polymorphism TNF*-857 independent of the PSORS1 risk allele. Arthritis Rheum. 2007;56:2056–2064.
  • Rahman P, Inman RD, Maksymowych WP, et al. Association of interleukin 23 receptor variants with psoriatic arthritis. J Rheumatol. 2009;36(1):137–140.
  • Zhu KJ, Zhu CY, Shi G, et al. Meta-analysis of IL12B polymorphisms (rs3212227, rs6887695) with psoriasis and psoriatic arthritis. Rheumatol Int. 2013;33(7):1785–1790.
  • Pelosi A, Lunardi C, Fiore PF, et al. MicroRNA expression profiling in psoriatic arthritis. Biomed Res Int. 2018;2018:7305380.
  • Chatzikyriakidou A, Voulgari PV, Georgiou I, et al. The role of microRNA-146a (miR-146a) and its target IL-1R-associated kinase (IRAK1) in psoriatic arthritis susceptibility. Scand J Immunol. 2010;71(5):382–385.
  • Hermann H, Runnel T, Aab A, et al. miR-146b probably assists miRNA-146a in the suppression of keratinocyte proliferation and inflammatory responses in psoriasis. J Invest Dermatol. 2017 Sep;137(9):1945–1954.
  • Zhang W, Yi X, Guo S, et al. A single-nucleotide polymorphism of miR-146a and psoriasis: an association and functional study. J Cell Mol Med. 2014 Nov;18(11):2225–2234.
  • Srivastava A, Nikamo P, Lohcharoenkal W, et al. MicroRNA-146a suppresses IL-17-mediated skin inflammation and is genetically associated with psoriasis. J Allergy Clin Immunol. 2017;139:550–561.
  • Chen HX, Liu YS, Zhang XJ. Target score used to reveal potential targets of miRNA203 and miRNA-146a in psoriasis by integrating microRNA overexpression and microarray data. Medicine (Baltimore). 2018;97:e12671.
  • Ciancio G, Ferracin M, Saccenti E, et al. Characterisation of peripheral blood mononuclear cell microRNA in early onset psoriatic arthritis. Clin Exp Rheumatol. 2017;35:113–121.
  • Xu WD, Pan HF, Li JH, et al. MicroRNA-21 with therapeutic potential in autoimmune diseases. Expert Opin Ther Targets. 2013;17:659–665.
  • Dolcino M, Pelosi A, Fiore PF, et al. Long non-coding RNAs play a role in the pathogenesis of psoriatic arthritis by regulating microRNAs and genes involved in inflammation and metabolic syndrome. Front Immunol. 2018;9:1533.
  • Olivieri I, Padula A, D’Angelo S, et al. Role of trauma in psoriatic arthritis. J Rheumatol. 2008;35:2085–2087.
  • Taylor-Gjevre RM, Nair B, Gjevre J, et al. Trauma and psoriatic arthritis: is there a relationship? Can Fam Physician. 2012;58(11):e636–40.
  • Hsieh J, Kadavath S, Efthimiou P. Can traumatic injury trigger psoriatic arthritis? A review of the literature. Clin Rheumatol. 2014;33(5):601–608.
  • Raychaudhuri SP, Jiang WY, Raychaudhuri SK. Revisiting the Koebner phenomenon: role of NGF and its receptor system in the pathogenesis of psoriasis. Am J Pathol. 2008;172:961–7118.
  • Theoharides TC, Alysandratos KD, Angelidou A, et al. Mast cells and inflammation. Biochim Biophys Acta. 2012;1822(1):21–33.
  • Pearce FL, Thompson HL. Some characteristics of histamine secretion from rat peritoneal mast cells stimulated with nerve growth factor. J Physiol. 1986;372:379–393.
  • Thorpe LW, Werrbach-Perez K, Perez-Polo JR. Effects of nerve growth factor on the expression of IL-2 receptors on cultured human lymphocytes. Ann NY Acad Sci. 1987;496:310–311.
  • Lambiase A, Bracci-Laudiero L, Bonini S, et al. Human CD4+T cell clones produce and release nerve growth factor and express high-affinity nerve growth factor receptors. J Allergy Clin Immunol. 1997;100:408–414.
  • Raychaudhuri SK, Raychaudhuri SP, Weltman H, et al. Effect of nerve growth factor on endothelial cell biology: proliferation and adherence molecule expression on human dermal microvascular endothelial cells. Arch Dermatol Res. 2001;293:291–295.
  • Naukkarinen A, Nickoloff BJ, Farber EM. Quantification of cutaneous sensory nerves and their substance P content in psoriasis. J Invest Dermatol. 1989;92:126–129.
  • Al’Abadie MS, Senior HJ, Bleehen SS, et al. Neuropeptides and general neuronal marker in psoriasis: an immunohistochemical study. Clin Exp Dermatol. 1995;20:384–389.
  • Wallengren J, Ekman R, Sunder F. Occurrence and distribution of neuropeptides in human skin. an immune-cytochemical and immuno-histochemical study on normal skin and blister fluid from inflamed skin. Ac-Ta Derm Venereol. 1987;67:185–192.
  • Aloe L. Nerve growth factor and neuroimmune responses: basic and clinical observations. Arch Physiol Biochem. 2001;109:354–356.
  • Hattori A, Iwasaki S, Murase K, et al. Tumor necrosis factor is markedly synergistic with interleukin1 and interferon gamma in stimulating the production of nerve growth factor in fibroblasts. FEBS Lett. 1994;340:177–180.
  • Moalem G, Gdalyahu A, Shani Y, et al. Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun. 2000;15(3):331–345.
  • Levine JD, Clark R, Devor M, et al. Intraneuronal substance P con-tributes to the severity of experimental arthritis. Science. 1984;226:547–549.
  • Jacques P, McGonagle D. The role of mechanical stress in the pathogenesis of spondyloarthritis and how to combat it. Best Pract Res Clin Rheumatol. 2014;28(5):703–710.
  • Jacques P, Lambrecht S, Verheugen E, et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann Rheum Dis. 2014;73:437–445.
  • Sakkas LI, Bogdanos DP. Are psoriasis and psoriatic arthritis the same disease? The IL-23/IL-17 axis data. Autoimmun Rev. 2017;16:10–15.
  • McGonagle D, Tan AL, Watad A, et al. Pathophysiology, assessment and treatment of psoriatic dactylitis. Nat Rev Rheumatol. 2019;15:113–122.
  • McGonagle D, Tan AL. The enthesis in psoriatic arthritis. Clin Exp Rheumatol. 2015;33:36–39.
  • Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–1761.
  • Nishimura S, Manabe I, Nagasaki M, et al. CD8+ effector T cells con-tribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15:914–920.
  • Versini M, Jeandel PY, Rosenthal E, et al. Obesity in autoimmune diseases: not a passive bystander. Autoimmun Rev. 2014;13:981–1000.
  • Stofkova A. Leptin and adiponectin: from energy and metabolic dysbalance to inflammation and autoimmunity. Endocr Regul. 2009;43:157–168.
  • Ikuni N, Lam QL, Lu L, et al. Leptin and Inflammation. Curr Immunol Rev. 2008;4:70–79.
  • Krysiak R, Handzlik-Orlik G, Okopien B. The role of adipokines in connective tissue diseases. Eur J Nutr. 2012;51:513–528.
  • Cañete JD, Mease P. The link between obesity and psoriatic arthritis. Ann Rheum Dis. 2012;71(8):1265–1266.
  • Russolillo A, Iervolino S, Peluso R, et al. Obesity and psoriatic arthritis: from pathogenesis to clinical outcome and management. Rheumatology (Oxford). 2013;52(1):62–67.
  • Sun Y, Xun K, Wang C, et al. Adiponectin, an unlocking adipocytokine. Cardiovasc Ther. 2009;27(Spring):59–75.
  • Chimenti MS, Triggianese P, Conigliaro P, et al. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 2015;6:e1887.
  • Costa L, Caso F, Ramonda R, et al. Metabolic syndrome and its relationship with the achievement of minimal disease activity state in psoriatic arthritis patients: an observational study. Immunol Res. 2015;61(1–2):147–153.
  • Singh S, Facciorusso A, Singh AG, et al. Obesity and response to anti-tumor necrosis factor-α agents in patients with select immune-mediated inflammatory diseases: A systematic review and meta-analysis. PLoS One. 2018;13(5):e0195123.
  • Costa L, Caso F, Atteno M, et al. Impact of 24 month treatment with etanercept, adalimumab, or methotrexate on metabolic syndrome components in a cohort of 210 psoriatic arthritis patients. Clin Rheumatol. 2014;33(6):833–839.
  • Di Minno MN, Peluso R, Iervolino S, et al. Obesity and the prediction of minimal disease activity: a prospective study in psoriatic arthritis. Arthritis Care Res (Hoboken). 2013;65:141–147.
  • Di Minno MN, Peluso R, Iervolino S, et al. CaRRDs study group. weight loss and achievement of minimal disease activity in patients with psoriatic arthritis starting treatment with tumour necrosis factor α blockers. Ann Rheum Dis. 2014;73(6):1157–1162.
  • Eppinga H, Konstantinov SR, Peppelenbosch MP, et al. The microbiome and psoriatic arthritis. Curr Rheumatol Rep. 2014;16:407.
  • Van Praet L, Van Den Bosch F, Mielants H, et al. Mucosal inflammation in spondylarthritides: past, present, and future. Curr Rheumatol Rep. 2011;13:409–415.
  • Scarpa R, Manguso F, D’Arienzo A, et al. Microscopic inflammatory changes in colon of patients with both active psoriasis and psoriatic arthritis without bowel symptoms. J Rheumatol. 2000;27:1241–1246.
  • Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–211.
  • Collado MC, Derrien M, Isolauri E, et al. Intestinal integrity and akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol. 2007;73:7767–7770.
  • Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180.
  • Scher JU, Ubeda C, Artacho A, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67:128–139.
  • Chimenti MS, Perricone C, Novelli L, et al. Interaction between microbiome and host genetics in psoriatic arthritis. Autoimmun Rev. 2018;17(3):276–283.
  • Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347:911–920.
  • Peluso R, Iervolino S, Vitiello M, et al. Extra-articular manifestations in psoriatic arthritis patients. Clin Rheumatol. 2015;34:745–753.
  • Moen K, Brun JG, Valen M, et al. Synovial inflammation in active rheumatoid arthritis and psoriatic arthritis facilitates trapping of a variety of oral bacterial DNAs. Clin Exp Rheumatol. 2006;24:656–663.
  • Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol. 2002;2:372–377.
  • Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun. 2010;34:J258–65.
  • Pezzolo E, Naldi L. The relationship between smoking, psoriasis and psoriatic arthritis. Expert Rev Clin Immunol. 2018;31:1–8.
  • Li W, Han J, Qureshi AA. Smoking and risk of incident psoriatic arthritis in US women. Ann Rheum Dis. 2012;71:804–808.
  • Zhao S, Jones GT, Macfarlane GJ, et al. Associations between smoking and extra-axial manifestations and disease severity in axial spondyloarthritis: results from the BSR biologics register for ankylosing spondylitis (BSRBR-AS). Rheumatology (Oxford). 2019;58:811–819.
  • Wenink MH, Santegoets KC, Butcher J, et al. Impaired dendritic cell proinflammatory cytokine production in psoriatic arthritis. Arthritis Rheum. 2011;63(11):3313–3322.
  • Lories RJ, de Vlam K. Is psoriatic arthritis a result of abnormalities in acquired or innate immunity? Curr Rheumatol Rep. 2012;14(4):375–382.
  • Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol. 2004;4:211–222.
  • Candia L, Marquez J, Hernandez C, et al. Toll-like receptor-2 expression is upregulated in antigen-presenting cells from patients psoriatic arthritis: a pathogenic role for innate immunity? J Rheumatol. 2007;3:374–379.
  • Akbal A, Oğuz S, Gökmen F, et al. C-reactive protein gene and Toll-like receptor 4 gene polymorphisms can relate to the development of psoriatic arthritis. Clin Rheumatol. 2015;34(2):301–306.
  • Carrasco S, Neves FS, Fonseca MH, et al. Toll-like receptor (TLR) 2 is upregulated on peripheral blood monocytes of patients with psoriatic arthritis: a role for a gram-positive inflammatory trigger?. Clin Exp Rheumatol. 2011;29(6):958–962.
  • Diani M, Altomare G, Reali E. T cell responses in psoriasis and psoriatic arthritis. Autoimmun Rev. 2015;14(4):286–292.
  • Su F, Xia Y, Huang M, et al. Expression of NLPR3 in psoriasis is associated with enhancement of interleukin-1β and caspase-1. Med Sci Monit. 2018;24:7909–7913.
  • Zotti T, Polvere I, Voccola S, et al. CARD14/CARMA2 signaling and its role in inflammatory skin disorders. Front Immunol. 2018;9:2167.
  • Israel L, Mellett M. Clinical and genetic heterogeneity of CARD14 mutations in psoriatic skin disease. Front Immunol. 2018;9:2239.
  • Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol. 2018;55:379–390.
  • Boutet MA, Nerviani A, Gallo Afflitto G, et al. Role of the IL-23/IL-17 axis in psoriasis and psoriatic arthritis: the clinical importance of its divergence in skin and joints. Int J Mol Sci. 2018;19(2):530.
  • Suzuki E, Mellins ED, Gershwin ME, et al. The IL-23/IL-17 axis in psoriatic arthritis. Autoimmun Rev. 2014;13:496–502.
  • Cai Y, Shen X, Ding C, et al. Pivotal role of dermal IL-17-producingγδT cells in skin inflammation. Immunity. 2011;35:596–610.
  • Giacomelli R, Passacantando A, Perricone R, et al. T lymphocytes in the synovial fluid of patients with active rheumatoid arthritis display CD134-OX40 surface antigen. Clin Exp Rheumatol. 2001;19:317–320.
  • Benham H, Norris P, Goodall J, et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther. 2013;15:R136.
  • Leijten EF, van Kempen TS, Boes M, et al. Brief report: enrichment of activated group 3 innate lym-phoid cells in psoriatic arthritis synovial fluid. Arthritis Rheumatol. 2015;67:2673–2678.
  • Res PC, Piskin G, de Boer OJ, et al. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS One. 2010;5:e14108.
  • Triggianese P, Conigliaro P, Chimenti MS, et al. Evidence of IL-17 producing innate lymphoid cells in peripheral blood from patients with enteropathic spondyloarthritis. Clin Exp Rheumatol. 2016;34:1085–1093.
  • Villanova F, Flutter B, Tosi I, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol. 2014;134:984–991.
  • Ward NL, Umetsu DT. A new player on the psoriasis block: IL-17A-and IL-22-producing innate lymphoid cells. J Invest Dermatol. 2014;134:2305–2307.
  • Volpe E, Servant N, Zollinger R, et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nat Immunol. 2008;9:650–657.
  • Stritesky GL, Yeh N, Kaplan MH. IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol. 2008;181:5948–5955.
  • Keijsers RR, Joosten I, van Erp PE, et al. van de kerkhof PC. cellular sources of IL-17 in psoriasis: a paradigm shift? Exp Dermatol. 2014;23(11):799–803.
  • Aochi S, Tsuji K, Sakaguchi M, et al. Markedly elevated serum levels of calcium-binding S100A8/A9 proteins in psoriatic arthritis are due to activated monocytes/macrophages. J Am Acad Dermatol. 2011;64:879–887.
  • Inciarte-Mundo J, Ramirez J, Hernández MV, et al. Calprotectin strongly and independently predicts relapse in rheumatoid arthritis and polyarticular psoriatic arthritis patients treated with tumor necrosis factor inhibitors: a 1 year prospective cohort study. Arthritis Res Ther. 2018;20:275.
  • Berntzen HB, Munthe E, Fagerhol MK. A longitudinal study of the leukocyte protein L1 as an indicator of disease activity in patients with rheumatoid arthritis. J Rheumatol. 1989;16:1416–1420.
  • Hansson C, Eriksson C, Alenius G-M. S-calprotectin (S100A8/S100A9): a potential marker of inflammation in patients with psoriatic arthritis. J Immunol Res. 2014;2014:696415.
  • Hammer HB, Ødegård S, Fagerhol MK, et al. Calprotectin (a major leucocyte protein) is strongly and independently correlated with joint inflammation and damage in rheumatoid arthritis. Ann Rheum Dis. 2007;66:1093–1097.
  • Hammer HB, Ødegård S, Syversen SW, et al. Calprotectin (a major S100 leucocyte protein) predicts 10-year radiographic progression in patients with rheumatoid arthritis. Ann Rheum Dis. 2010;69:150–154.
  • Carubbi F, Chimenti MS, Blasetti G, et al. Association of psoriasis and/or psoriatic arthritis with autoimmune diseases: the experience of two Italian integrated dermatology/rheumatology outpatient clinics. J Eur Acad Dermatol Venereol. 2015;29:2160–2168.
  • Chimenti MS, Spinelli FR, Giunta A, et al. Emergence of antinuclear antibodies in psoriatic patients treated with infliximab: personal experience and literature review. Drug Dev Res. 2014;75(Suppl 1):S61–3.
  • Saraceno R, Chimenti MS, Chimenti S. The significance of the development of antinuclear antibodies during infliximab treatment. J Am Acad Dermatol. 2013;69(2):314.
  • Conigliaro P, Chimenti M, Triggianese P, et al. Autoantibodies in inflammatory arthritis. Autoimmun Rev. 2016;15(7):673–683.
  • Yuan Y, Qiu J, Lin ZT, et al. Identification of novel autoantibodies associated with psoriatic arthritis. Arthritis Rheumatol. 2019;71:941–951.
  • Lande R, Botti E, Jandus C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5:5621.
  • Frasca L, Palazzo R, Chimenti MS, et al. Anti-LL37 antibodies are present in psoriatic arthritis (PsA) patients: new biomarkers in PsA. Front Immunol. 2018;9:193.
  • Rosenberg EW, Noah PW, Wyatt RJ, et al. Complement activation in psoriasis. Clin Exp Dermatol. 1990;15:16–20.
  • Chimenti MS, Perricone C, Graceffa D, et al. Complement system in psoriatic arthritis: a useful marker in response prediction and monitoring of anti-TNF treatment. Clin Exp Rheumatol. 2012;30:23–30.
  • Ballanti E, Perricone C, Di Muzio G, et al. Role of the complement system in rheumatoid arthritis and psoriatic arthritis: relationship with anti-TNF inhibitors. Autoimmun Rev. 2011;10:617–623.
  • Partsch G, Bauer K, Bröll H, et al. Complement C3 cleavage product in synovial fluids detected by immunofixation. Z Rheumatol. 1991;50:82–85.
  • Schett G, Lories RJ, D’Agostino MA, et al. Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol. 2017;13(12):731–741.
  • Siannis F, Farewell VT, Cook RJ, et al. Clinical and radiological damage in psoriatic arthritis. Ann Rheum Dis. 2006;65:478–481.
  • Simon D, Faustini F, Kleyer A, et al. Analysis of periarticular bone changes in patients with cutaneous psoriasis without associated psoriatic arthritis. Ann Rheum Dis. 2016;75:660–666.
  • Paine A, Ritchlin C. Bone remodelling in psoriasis and psoriatic arthritis: an update. Curr Opin Rheumatol. 2016;28:66–75.
  • Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modelling and remodelling. Arch Biochem Biophys. 2008;473:139–146.
  • Danks L, Komatsu N, Guerrini MM, et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis. 2016;75:1187–1195.
  • Ritchlin CT, Haas-Smith SA, Li P, et al. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Investig. 2003;111:821–831.
  • Partsch G, Wagner E, Leeb BF, et al. Upregulation of cytokine receptors sTNF-R55, sTNF- R75, and sIL-2R in psoriatic arthritis synovial fluid. J Rheumatol. 1998;25:105–110.
  • Kavanaugh A, Antoni CE, Gladman D, et al. The infliximab multinational psoriatic arthritis controlled trial (IMPACT): results of radiographic analyses after 1 year. Ann Rheum Dis. 2006;65(8):1038–1043.
  • Mease PJ, Kivitz AJ, Burch FX, et al. Etanercept treatment of psoriatic arthritis: safety, efficacy, and effect on disease progression. Arthritis Rheum. 2004;50(7):2264–2272.
  • Papoutsaki M, Chimenti MS, Costanzo A, et al. Adalimumab for severe psoriasis and psoriatic arthritis: an open-label study in 30 patients previously treated with other biologics. J Am Acad Dermatol. 2007;57:269–275.
  • Chimenti MS, Teoli M, Saraceno R, et al. Golimumab in patients affected by moderate to severe psoriatic arthritis: an open-label study in thirty-two patients previously treated with other biologics. Dermatology. 2013;227(4):305–310.
  • van der Heijde D, Fleischmann R, Wollenhaupt J, et al. Effect of different imputation approaches on the evaluation of radiographic progression in patients with psoriatic arthritis: results of the RAPID-PsA 24 week phase III double-blind randomised placebo-controlled study of certolizumab pegol. Ann Rheum Dis. 2014;73:233–237.
  • Anandarajah AP, Schwarz EM, Totterman S, et al. The effect of etanercept on osteoclast precursor frequency and enhancing bone marrow oedema in patients with psoriatic arthritis. Ann Rheum Dis. 2008;67:296–301.
  • Benham H, Norris P, Goodall J, et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther. 2013;15:R136.
  • Hüffmeier U, Lascorz J, Böhm B, et al. Genetic variants of the IL-23R pathway: association with psoriatic arthritis and psoriasis vulgaris, but no specific risk factor for arthritis. J Invest Dermatol. 2009;129:355–358.
  • Di Meglio P, Di Cesare A, Laggner U, et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS One. 2011;6:e17160.
  • Sherlock JP, Joyce-Shaikh B, Turner SP, et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18:1069–1076.
  • Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Investig. 1999;103:1345–1352.
  • van der Heijde D, Landewe RB, Mease PJ, et al. Brief report: secukinumab provides significant and sustained inhibition of joint structural damage in a phase III study of active psoriatic arthritis. Arthritis Rheumatol. 2016;68:1914–1921.
  • Ogdie A, Harter L, Shin D, et al. The risk of fracture among patients with psoriatic arthritis and psoriasis: a population-based study. Ann Rheum Dis. 2017;76:882–885.
  • Chandran S, Aldei A, Johnson SR, et al. Prevalence and risk factors of low bone mineral density in psoriatic arthritis: A systematic review. Semin Arthritis Rheum. 2016;46:174–182.
  • McGonagle D. Imaging the joint and enthesis: insights into pathogenesis of psoriatic arthritis. Ann Rheum Dis. 2005;64(Suppl 2):ii58–i60.
  • Paine A, Ritchlin C. Altered bone remodeling in psoriatic disease: new insights and future directions. Calcif Tissue Int. 2018;102:559–574.
  • Lu Z, Wang G, Dunstan CR, et al. Short-term exposure to tumor necrosis factor-alpha enables human osteoblasts to direct adipose tissue-derived mesenchymal stem cells into osteogenic differentiation. Stem Cells Dev. 2012;21:2420–2429.
  • Cho HH, Shin KK, Kim YJ, et al. NF-kappaB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol. 2010;223:168–177.
  • Wang Z, Jia Y, Du F, et al. IL-17A inhibits osteogenic differentiation of bone mesenchymal stem cells via WNT signalling pathway. Med Sci Monit. 2017;23:4095–4101.
  • Croes M, Oner FC, van Neerven D, et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone. 2016;84:262–270.
  • Ono T, Okamoto K, Nakashima T, et al. IL-17-producing gammadelta T cells enhance bone regeneration. Nat Commun. 2016;7:10928.
  • Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Investig. 2005;115:1571–1579.
  • Abd-Elsalam N, Kamel N, Zamzam M, et al. The relation between serum bone morphogenetic protein-7 and severity of enthesitis in psoriatic arthritis. Egypt Rheumatol Rehabil. 2013;40:129–133.
  • Singh JA, Guyatt G, Ogdie A, et al. Special article: 2018 american college of rheumatology/national psoriasis foundation guideline for the treatment of psoriatic arthritis. Arthritis Care Res (Hoboken). 2019;71:2–29.
  • Lubrano E, Perrotta FM. The role of IL-17 in the treatment of psoriatic arthritis. Expert Rev Clin Immunol. 2017;13:815–821.
  • McInnes IB, Mease PJ, Ritchlin CT, et al. Secukinumab sustains improvement in signs and symptoms of psoriatic arthritis: 2 year results from the phase 3 FUTURE 2 study. Rheumatology (Oxford). 2017;56:1993–2003.
  • Mease PJ, van der Heijde D, Ritchlin CT, et al. SPIRIT-P1 study group. ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24 week randomised,double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann Rheum Dis. 2017;76:79–87.
  • Giunta A, Ventura A, Chimenti MS, et al. Spotlight on ixekizumab for the treatment of moderate-to-severe plaque psoriasis: design, development, and use in therapy. Drug Des Devel Ther. 2017;11:1643–1651.
  • van der Heijde D, Gladman DD, Kishimoto M, et al. Efficacy and safety of ixekizumab in patients with active psoriatic arthritis: 52 week results from a phase iii study (SPIRIT-P1). J Rheumatol. 2018;45:367–377.
  • Genovese MC, Combe B, Kremer JM, et al. Safety and efficacy of ixekizumab in patients with PsA and previous inadequate response to TNF inhibitors: week 52 results from SPIRIT-P2. Rheumatology (Oxford). 2018;57:2001–2011.
  • Mease PJ, Genovese MC, Greenwald MW, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370:2295–2306.
  • Vignali DA, Kuchroo VK. IL-12 family cytokines: immunological playmakers. Nat Immunol. 2012;13:722–728.
  • Chimenti MS, Ortolan A, Lorenzin M, et al. Effectiveness and safety of ustekinumab in naïve or TNF-inhibitors failure psoriatic arthritis patients: a 24 month prospective multicentric study. Clin Rheumatol. 2018;37:397–405.
  • Křížová L, Kuchař M, Petroková H, et al. p19-targeted ABD-derived protein variants inhibit IL-23 binding and exert suppressive control over IL-23-stimulated expansion of primary human IL-17+ T-cells. Autoimmunity. 2017;50:102–113.
  • Wechter T, Cline A, Feldman SR. Targeting p19 as a treatment option for psoriasis: an evidence-based review of guselkumab. Ther Clin Risk Manage. 2018;14:1489–1497.
  • Reich K, Papp KA, Blauvelt A, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet. 2017;390:276–288.
  • Papp KA, Blauvelt A, Bukhalo M, et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N Engl J Med. 2017;376:1551–1560.
  • Deodhar A, Gottlieb AB, Boehncke WH, et al. CNTO1959PSA2001 study group. efficacy and safety of guselkumab in patients with active psoriatic arthritis: a randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 2018;391:2213–2224.
  • Boyle DL, Soma K, Hodge J, et al. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann Rheum Dis. 2015;74:1311–1316.
  • Mease P, Hall S, FitzGerald O, et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N Engl J Med. 2017;377:1537–1550.
  • Gladman D, Rigby W, Azevedo VF, et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med. 2017;377:1525–1536.
  • Curtis JR, Xie F, Yun H, et al. Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1843–1847.
  • Strand V, Ahadieh S, French J, et al. Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Res Ther. 2015;17:362.
  • Chiricozzi A, Faleri S, Saraceno R, et al. Tofacitinib for the treatment of moderate-to-severe psoriasis. Expert Rev Clin Immunol. 2015;11:443–455.
  • Wang CJ, Heuts F, Ovcinnikovs V, et al. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc Natl Acad Sci U S A. 2015;112:524–529.
  • Esensten JH, Helou YA, Chopra G, et al. CD28 costimulation: from mechanism to therapy. Immunity. 2016;44:973–988.
  • Mease P, Genovese MC, Gladstein G, et al. Abatacept in the treatment of patients with psoriatic arthritis: results of a six-month, multicenter, randomized, double-blind, placebo-controlled, phase II trial. Arthritis Rheum. 2011;63(4):939–948.
  • Mease PJ, Gottlieb AB, van der Heijde D, et al. Ef cacy and safety of abatacept, a T-cell modulator, in a randomised, double-blind, placebo- controlled, phase III study in psoriatic arthritis. Ann Rheum Dis. 2017;76(9):1550–1558.
  • Noisette A, Hochberg MC. Abatacept for the treatment of adults with psoriatic arthritis: patient selection and perspectives. Psoriasis (Auckl). 2018;8:31–39.
  • Khatri A, Othman AA. Population pharmacokinetics of the TNF-α and IL-17A dual-variable domain antibody ABT-122 in healthy volunteers and subjects with psoriatic or rheumatoid arthritis: analysis of phase 1 and 2 clinical trials. J Clin Pharmacol. 2018;58:803–813.
  • Fleischmann RM, Wagner F, Kivitz AJ, et al. Safety, tolerability, and pharmacodynamics of ABT-122, a tumor necrosis factor and interleukin-17-targeted dual variable domain immunoglobulin, in patients with rheumatoid arthritis. Arthritis Rheumatol. 2017;69:2283–2291.
  • Mease PJ, Genovese MC, Weinblatt ME, et al. Phase II study of ABT-122, a tumor necrosis factor- and interleukin-17A-targeted dual variable domain immunoglobulin, in patients with psoriatic arthritis with an inadequate response to methotrexate. Arthritis Rheumatol. 2018;70:1778–1789.
  • Jacobson KA, Merighi S, Varani K, et al. A(3) adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev. 2018;38:1031–1072.
  • Ravani A, Vincenzi F, Bortoluzzi A, et al. Role and function of A(2A) and A₃ adenosine receptors in patients with ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. Int J Mol Sci. 2017;18.
  • David M, Gospodinov DK, Gheorghe N, et al. Treatment of plaque-type psoriasis with oral CF101: data from a phase ii/iii multicenter,randomized, controlled trial. J Drugs Dermatol. 2016;15:931–938.
  • Ciccia F, Guggino G, Ferrante A, et al. Interleukin-9 overex- pression and Th9 polarization characterize the inflamed gut, the synovial tissue, and the peripheral blood of patients with psoriatic arthritis. Arthritis Rheumatol. 2016;68:1922–1931.
  • Novelli L, Chimenti MS, Chiricozzi A, et al. The new era for the treatment of psoriasis and psoriatic arthritis: perspectives and validated strategies. Autoimmun Rev. 2014;13:64–69.
  • Reich K, Armstrong AW, Foley P, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial. J Am Acad Dermatol. 2017;76:418–431.
  • Zweegers J, Groenewoud JMM, van Den Reek JMPA, et al. Comparison of the 1- and 5 year effectiveness of adalimumab, etanercept and ustekinumab in patients with psoriasis in daily clinical practice: results from the prospective BioCAPTURE registry. Br J Dermatol. 2017 Apr;176(4):1001–1009.
  • Favalli EG, Becciolini A, Caporali R, et al. GISEA study group. the profiling of axial spondyloarthritis patient candidate to a biologic therapy: consensus from a delphi-panel of Italian experts. Autoimmun Rev. 2018;17(12):1251–1258.
  • Noureldin B, Barkham N. The current standard of care and the unmet needs for axial spondyloarthritis. Rheumatology (Oxford). 2018;57(suppl 6):vi10–vi17.
  • Perricone C, de Carolis C, Perricone R. Pregnancy and autoimmunity: a common problem. Best Pract Res Clin Rheumatol. 2012;26:47–60.
  • Fassio A, Gatti D, Rossini M, et al. Secukinumab produces a quick increase in WNT signaling antagonists in patients with psoriatic arthritis. Clin Exp Rheumatol. 2019;37(1):133–136.
  • Costa L, Del Puente A, Peluso R, et al. Small molecule therapy for managing moderate to severe psoriatic arthritis. Expert Opin Pharmacother. 2017;18:1557–1567.
  • Jimenez-Boj E, Stamm TA, Sadlonova M, et al. Rituximab in psoriatic arthritis: an exploratory evaluation. Ann Rheum Dis. 2012;71(11):1868–1871.
  • Goll GL, Haavardsholm EA, Kvien TK. The confidence of rheumatologists about switching to biosimilars for their patients. Joint Bone Spine. 2018;85:507–509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.