472
Views
3
CrossRef citations to date
0
Altmetric
Review

Sepsis, immunosuppression and the role of epigenetic mechanisms

ORCID Icon, &
Pages 169-176 | Received 17 Sep 2020, Accepted 11 Jan 2021, Published online: 17 Feb 2021

References

  • Vincent JL, Marshall JC, Namendys-Silva SA, et al. Assessment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet Respir Med. 2014;2(5):380–386.
  • Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–272.
  • Singer M, Deutschman CS, Seymour CW, et al. The Third Interna- tional Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–810.
  • World Health Organization. Statement on Maternal Sepsis. Human reproduction programme. https://apps.who.int/iris/bitstream/handle/10665/254608/WHO-RHR-17.02-eng.pdf?sequence=1&isAllowed=y. 2017.[ Accessed 2020 May 15].
  • Vincent JL, Jones G, David S, et al. Frequency and mortality of septic shock in Europe and North America: a systematic review and meta-analysis. Crit Care. 2019;23(1):196.
  • Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–150.
  • Nagamori T, Koyano S, Asai Y, et al. Sequential changes in pathophysiology of systemic inflammatory response in a disseminated neonatal herpes simplex virus (HSV) infection. J Clin Virol. 2012;53(3):265–267.
  • Samanta S, Zhou Z, Rajasingh S, et al. DNMT and HDAC inhibitors together abrogate endotoxemia mediated T macrophage death by STAT3-JMJD3 signaling. Int J Biochem Cell Biol. 2018;102:117–127.
  • Kovach MA, Standiford TJ. The function of neutrophils in sepsis. Curr Opin Infect Dis. 2012;25(3):321–327.
  • Janeway CA, Travers P, Walport M, et al. Immunobiology: the Immune System in Health and Disease. New York (NY): Garland Science Publishing; 2005.
  • Yende S, D’Angelo G, Kellum JA, et al. Inflammatory markers at hospital discharge predict subsequent mortality after pneumonia and sepsis. Am J Respir Crit Care Med. 2008;177(11):1242–1247.
  • Taniguchi T, Koido Y, Aiboshi J, et al. Change in the ratio of interleukin-6 to interleukin- 10 predicts a poor outcome in patients with systemic inflamma- tory response syndrome. Crit Care Med. 1999;27(7):1262–1264.
  • Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–874.
  • Carson WF, Cavassani KA, Dou Y, et al., Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics. 6(3): 273–283. 2011. .
  • Wood S, Jayaraman V, Huelsmann EJ, et al. Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response. PLoS One. 2014;9(3):e91574.
  • Davis FM, Schaller MA, Dendekker A, et al. Sepsis Induces Prolonged Epigenetic Modifications in Bone Marrow and Peripheral Macrophages Impairing Inflammation and Wound Healing. Arterioscler Thromb Vasc Biol. 2019;39(11):2353–2366.
  • McCall CE, Yoza B, Liu T, et al. Gene-specific epi- genetic regulation in serious infections with systemic inflammation. J Innate Immun. 2010;2(5):395–405.
  • Hall MW, Knatz NL, Vetterly C, et al. Immunoparalysis and nosocomial infection in children with multiple organ dysfunction syndrome. Int Care Med. 2011;37(3):525–532. .
  • Simonatto M, Natoli G. Functional genomics of the inflammatory re- sponse: where are we now? Brief Funct Genomics. 2013;12(6):483–488.
  • Reid BM, Coe CL, Doyle CM, et al. Persistent skewing of the T-cell profile in adolescents adopted internationally from institutional care. Brain Behav Immun. 2019;77:168–177.
  • Elwenspoek MMC, Sias K, Hengesch X, et al. T Cell Immunosenescence after Early Life Adversity: association with Cytomegalovirus Infection. Front Immunol. 2017;17:8: 1263.
  • Bruse N, Leijte GP, Pickkers P, et al. New frontiers in precision medicine for sepsis-induced immunoparalysis. Expert Rev Clin Immunol. 2019;15(3):251–263.
  • Muñoz B, Suárez-Sánchez R, Hernández-Hernández O, et al. From traditional biochemical signals to molecular markers for detection of sepsis after burn injuries. Burns. 2019;45(1):16–31.
  • Boomer JS, To K, Chang KC, et al., Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 306(23): 2594‐2605. 2011.
  • Zaghloul N, Addorisio ME, Silverman HA, et al. Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors. Front Immunol. 2017;8:1673.
  • Kong X, Zhang J, Huo J, et al. A systematic investigation on animal models of cyclosporine A combined with Escherichia coli to simulate the immunosuppressive status of sepsis patients before onset. Int Immunopharmacol. 2018;62:67‐76.
  • Custodero C, Wu Q, Ghita GL, et al. Prognostic value of NT-proBNP levels in the acute phase of sepsis on lower long-term physical function and muscle strength in sepsis survivors. Crit Care. 2019;23(1):230.
  • Nascimento DC, Melo PH, Piñeros AR, et al. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat Commun. 2017;8(1):14919.
  • Alves-Filho JC, Sônego F, Souto FO, et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 2010;16(6):708–712.
  • Venet F, Demaret J, Gossez M, et al. Myeloid cells in sepsis-acquired immunodeficiency. Ann N Y Acad Sci. 2020 Mar 23. DOI:10.1111/nyas.14333.
  • Sen A, Yende S. Towards personalized medicine in sepsis: quest for Shangri-La? Crit Care. 2013;17(1):303.
  • Patera AC, Drewry AM, Chang K, et al. Frontline Science: defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1. J Leukocyte Biol. 2016;100(6):1239–1254.
  • Drewry AM, Samra N, Skrupky LP, et al. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock. 2014;42(5):383–391.
  • Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–398.
  • Waddington CH. The Strategy of the Genes. London: Allen & Unwin; 1957.
  • Russo VEA, Riggs AD, Martienssen RA. Epigenetic Mechanisms of Gene Regulation. New York (NY): Cold Spring Harbor; 1996.
  • Bomsztyk K, Mar D, An D, et al. Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction. Crit Care. 2015;19(1):225.
  • Turner BM. Nucleosome signalling: an evolving concept. Biochim Biophys Acta. 2014;1839(8):623–626.
  • Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–238.
  • de Ruijter AJM, Van Gennip AH, Caron HN, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370(3):737–749.
  • Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713.
  • Shakespear MR, Halili MA, Irvine KM, et al. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011;32(7):335–343.
  • Valenzuela-Fernández A, Cabrero JR, Serrador JM, et al. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions. Trends Cell Biol. 2008;18(6):291–297.
  • Ciarlo E, Roger T. Screening the Impact of Sirtuin Inhibitors on Inflammatory and Innate Immune Responses of Macrophages and in a Mouse Model of Endotoxic Shock. In: Sibaji Sarkar. Histone Deacetylases: methods and Protocols, Methods in Molecular Biology. New York: Springer Science + Business Media New York; 2016. Capther 21, Vol. 1436.
  • Carson WF, Kunkel SL. Regulation of Cellular Immune Responses in Sepsis by Histone Modifications. Adv Protein Chem Struct Biol. 2017;106:191–225.
  • Vermeulen M, Timmers HT. Grasping trimethylation of histone H3 at lysine 4. Epigenomics. 2010;2(3):395–406.
  • Grossniklaus U, Paro R. Transcriptional silencing by polycomb-group proteins. Cold Spring Harb Perspect Biol. 2014;6(11):a019331.
  • Puri D, Gala H, Mishra R, et al. High-wire act: the poised genome and cellular memory. Febs J. 2015;282(9):1675–1691.
  • Bomsztyk K, Denisenko O. Epigenetic alterations in acute kidney injury. Semin Nephrol. 2013;33(4):327–340.
  • Weiterer S, Uhle F, Lichtenstern C, et al. Sepsis Induces Specific Changes in Histone Modification Patterns in Human Monocytes. PLoS One. 2015;10:e0121748.
  • Futscher BW, Oshiro MM, Wozniak RJ, et al. Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet. 2002;31(2):175–179.
  • Fatemi M, Hermann A, Gowher H, et al. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem. 2002;269(20):4981–4984.
  • Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.
  • Robertson KD. DNA methylation and chromatin-Unraveling the tangled web. Oncogene. 2002;21(35):5361–5379.
  • Ashapkin VV, Kutueva LI, Vanyushin BF. Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes. Russ J Genet. 2016;52(3):237–248.
  • Dnmt BD. 3L and the establishment of maternal genomic imprints. Science. 2001;294(5551):2536–2539.
  • Castelo-Branco P, Choufani S, Mack S, et al. Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncol. 2013;14(6):534–542.
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(S3):245–254.
  • Leenen FA, Muller CP, Turner JD. DNA methylation: conducting the orchestra from exposure to phenotype? Clin Epigenetics. 2016;8(1):92.
  • Gamper CJ, Agoston AT, Nelson WG, et al. Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. J Immunol. 2009;183(4):2267–2276.
  • Poplutz MK, Wessels I, Rink L, et al. Regulation of the Interleukin-6 gene expression during monocytic differentiation of HL-60 cells by chromatin remodeling and methylation. Immunobiology. 2014;219(8):619–626 .
  • Shuto T, Furuta T, Oba M, et al. Promoter hypomethylation of Toll- like receptor-2 gene is associated with increased proinflammatory response toward bacterial peptidoglycan in cystic fibrosis bronchial epithelial cells. Faseb J. 2006;20(6):782–784.
  • Unterberg M, Kreuzer MJ, Schäfer ST, et al. NFKB1 Promoter DNA from nt+402 to nt+99 is hypomethylated in different human immune cells. PLoS One. 2016;11(6):e0156702.
  • Bataille A, Galichon P, Ziliotis MJ, et al. Epigenetic changes during sepsis: on your marks! Crit Care. 2015;19(1):358.
  • Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–784.
  • Avila AM, Burnett BG, Taye AA, et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest. 2007;117(3):659–671.
  • Kaminskas E, Farrell AT, Wang YC, et al. FDA Drug Approval Summary: azacitidine (5-azacytidine, Vidaza™) for Injectable Suspension. Oncologist. 2005;10(3):176–182.
  • Furumai R, Ito A, Ogawa K, et al. Histone deacetylase inhibitors block nuclear factor- kappaB-dependent transcription by interfering with RNA polymerase II recruitment. Cancer Sci. 2011;102(5):1081–1087.
  • Suzuki T, Miyata N. Non-hydroxamate histone deacetylase inhibitors. Curr Med Chem. 2005;12(24):2867–2880.
  • Steckert AV, Comim CM, Igna DMD, et al. Effects of sodium butyrate on aversive memory in rats submitted to sepsis. Neurosci Lett. 2015;595:134–138.
  • Pan Y, Wang J, Xue Y, et al. GSKJ4 Protects Mice Against Early Sepsis via Reducing Proinflammatory Factors and Up-Regulating MiR-146a. Front Immunol. 2018;9:2272.
  • MacDonald JL, Roskams AJ. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol. 2009;88(3):170–183.
  • Margueron R, Trojer P, Reinberg D. The key to development: interpreting the histone code? Curr Opin Genet Dev. 2005;15(2):163–176.
  • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447(7143):425–432.
  • Butt MU, Sailhamer EA, Li Y, et al. Pharmacologic resuscitation: cell protective mechanisms of histone deacetylase inhibition in lethal hemorrhagic shock. J Surg Res. 2009;156(2):290–296.
  • Wong HR, Freishtat RJ, Monaco M, et al. Leukocyte subset-derived genomewide expression profiles in pediatric septic shock. Pediatr Crit Care Med. 2010;11(3):349–355.
  • Chapman SJ, Hill AV. Human genetic susceptibility to infectious disease. Nat Rev Genet. 2012;13(3):175–188.
  • Rautanen A, Mills TC, Gordon AC, et al. Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study. Lancet Respir Med. 2015;3(1):53–60.
  • El Gazzar M, Yoza BK, Chen X, et al. Chromatin- specific remodeling by HMGB1 and linker histone H1 silences proinflamma- tory genes during endotoxin tolerance. Mol Cell Biol. 2009;29(7):1959–1971.
  • Novakovic B, Habibi E, Wang SY, et al. β-glucan reverses the epigen- etic state of LPS-induced immunological tolerance. Cell. 2016;167(1354–1368):e14.
  • Dhas DB, Ashmi AH, Bhat BV, et al. Comparison of genomic DNA methylation pattern among septic and non-septic newborns - An epigenome wide association study. Genom Data. 2014;3:36–40.
  • Wen H, Dou Y, Hogaboam CM, et al. Epigenetic regulation of den- dritic cell-derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood. 2008;111(4):1797–1804.
  • Hu X, Yu Y, Eugene Chin Y, et al. The role of acetylation in TLR4-mediated innate immune responses. Immunol Cell Biol. 2013;91(10):611–614.
  • Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007;447(7147):972–978.
  • Takebe M, Oishi H, Taguchi K, et al. Inhibition of histone deacetylases protects septic mice from lung and splenic apoptosis. J Surg Res. 2014;187(2):559–570.
  • Ibañez-Cabellos JS, Aguado C, Pérez-Cremades D, et al. Extracellular histones activate autophagy and apoptosis via mTOR signaling in human endothelial cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864(10):3234–3246.
  • Leentjens J, Kox M, Van Der Hoeven JG, et al. Immuno- therapy for the adjunctive treatment of sepsis: from immunosuppression to immunostimulation. Time for a paradigm change? Am J Respir Crit Care Med. 2013;187(12):1287–1293.
  • Schneider R, Bannister AJ, Myers FA, et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol. 2004;6(1):73–77.
  • Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 2004;14(2):155–164.
  • Kim HJ, Bae SC. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 2011;3(2):166–179.
  • Tao R, de Zoeten EF, Ozkaynak E, et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nature Med. 2007;13(11):1299–1307.
  • Koenen HJ, Smeets RL, Vink PM, et al. CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112(6):2340–2352.
  • Kim SJ, Baek KS, Park HJ, et al. Compound 9a, a novel synthetic histone deacetylase inhibitor, protects against septic injury in mice by suppressing MAPK signalling. Br J Pharmacol. 2016;173(6):1045–1057.
  • Ji MH, Li GM, Jia M, et al. Valproic acid attenuates lipopolysaccharide-induced acute lung injury in mice. Inflammation. 2013;36(6):1453–1459.
  • De SF, Totaro MG, Prosperini E, et al. The histone h3 lysine-27 demethylase jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell. 2007;130(6):1083–1094.
  • Chen Y, Liu Z, Pan T, et al. JMJD3 is involved in neutrophil membrane proteinase 3 overexpression during the hyperinflammatory response in early sepsis. Int Immunopharmacol. 2018;59:40–46.
  • Chan C, Li L, McCall CE, et al. Endotoxin tolerance disrupts chromatin remodeling and NF-B transactivation at the IL-1 promoter. J Immunol. 2005;175(1):461–468.
  • El Gazzar M, Yoza BK, Hu JYQ, et al. Epigenetic silencing of tumor necrosis factor during endotoxin tolerance. J Biol Chem. 2007;282(37):26857–26864.
  • El Gazzar M, Yoza BK, Chen X, et al. G9a and HP1 couple histone and DNA methylation to TNFα transcription silencing during endotoxin tolerance. J Biol Chem. 2008;283(47):32198–32208.
  • Lorente-Sorolla C, Garcia-Gomez A, Català-Moll F, et al. Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis. Genome Med. 2019;11(1):66.
  • Rump K, Unterberg M, Dahlke A, et al. DNA methylation of a nf-κB binding site in the aquaporin 5 promoter impacts on mortality in sepsis. Sci Rep. 2019;9(1):18511.
  • Vachharajani V, McCall CE. Epigenetic and metabolic programming of innate immunity in sepsis. Innate Immun. 2019;25(5):267–279.
  • Coelho AL, Hogaboam CM, Kunkel SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Ver. 2005;16(6):553–560.
  • Ciarlo E, Savva A, Roger T. Epigenetics in sepsis: targeting histone deacetylases. Int J Antimicrob Agents. 2013;42:S8–S12.
  • Brogdon JL, Xu Y, Szabo SJ, et al. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood. 2007;109(3):1123–1130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.