3,577
Views
5
CrossRef citations to date
0
Altmetric
Perspective

Perspective: diagnostic laboratories should urgently develop T cell assays for SARS-CoV-2 infection

ORCID Icon, , , , ORCID Icon, , , & show all
Pages 421-430 | Received 22 Jan 2021, Accepted 16 Mar 2021, Published online: 26 Apr 2021

References

  • Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. DOI:10.1038/s41586-020-2012-7.
  • Almqvist, J., Granberg, T., Tzortzakakis, A., Klironomos, S., Kollia, E., Öhberg, C., Martin, R., Piehl, F., Ouellette, R. and Ineichen, B.V. 2020 Neurological manifestations of coronavirus infections – a systematic review. Ann Clin Transl Neurol, 7:2057–2071. https://doi.org/10.1002/acn3.51166.
  • Lo YL. COVID-19, fatigue, and dysautonomia. J Med Virol. 2021;93(3). DOI:10.1002/jmv.26552
  • Lancet T. Facing up to long COVID. Lancet. 2020;396(10266):1861. DOI:10.1016/S0140-6736(20)32662-3.
  • Abedi V, Olulana O, Avula V, et al. Racial, Economic, and Health Inequality and COVID-19 Infection in the United States. J Racial Ethn Health Disparities. 2020. DOI:10.1007/s40615-020-00833-4.
  • Graham R, Masters‐Awatere B. Experiences of Māori of Aotearoa New Zealand’s public health system: a systematic review of two decades of published qualitative research. Aust N Z J Public Health. 2020;44(3):193–200.
  • Mazza MG, De Lorenzo R, Conte C, et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain, Behavior, and Immunity, 2020: 89:594–600. https://doi.org/10.1016/j.bbi.2020.07.037.
  • Ameratunga R, Lehnert K, Leung E, et al. Inhaled modified angiotensin converting enzyme 2 (ACE2) as a decoy to mitigate SARS-CoV-2 infection. N Z Med J. 2020;133(1515):112–118. .
  • Manners C, Larios Bautista E, Sidoti H, et al. Protective adaptive immunity against severe acute respiratory syndrome Coronaviruses 2 (SARS-CoV-2) and implications for vaccines. Cureus. 2020;12(6):e8399.
  • Brodin P. Immune determinants of COVID-19 disease presentation and severity. Nat Med. 2021;27(1):28–33.
  • Baek WK, Sohn S-Y, Mahgoub A, et al. A comprehensive review of severe acute respiratory syndrome Coronavirus 2. Cureus. 2020;12(5):e7943. DOI:10.7759/cureus.7943. .
  • Chen Z, John Wherry E. T cell responses in patients with COVID-19. Nat Rev Immunol. 2020;20(9):529–536.
  • Watanabe Y, Allen JD, Wrapp D, et al. Site-specific glycan analysis of the SARS-CoV-2 spike. Science. 2020;369(6501):330–333.
  • Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021; 371(6529):eabf4063. DOI: 10.1126/science.abf4063.
  • Breathnach DAS, Riley PA, Cotter MP, et al. Prior COVID-19 significantly reduces the risk of subsequent infection, but reinfections are seen after eight months. J Infect. 2021. DOI:10.1016/j.jinf.2021.01.005
  • Harrington D, Kele B, Pereira S, et al. Confirmed reinfection with severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) variant VOC-202012/01. Clin Infect Dis. 2021. DOI:10.1093/cid/ciab014.
  • Tillett RL, Sevinsky JR, Hartley PD, et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect Dis. 2021;21(1):52–58. DOI:10.1016/S1473-3099(20)30764-7.
  • Negro F. Is antibody-dependent enhancement playing a role in COVID-19 pathogenesis? Swiss Med Wkly. 2020;150:w20249. DOI:10.4414/smw.2020.20249. eCollection 22020 Apr 20246
  • Zhou Y, Liu Z, Li S, et al. Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 2021;34(5):108699. DOI:10.1016/j.celrep.2021.108699.
  • Bacher P, Rosati E, Esser D, et al. Low-avidity CD4+ T cell responses to SARS-CoV-2 in unexposed individuals and humans with severe COVID-19. Immunity. 2020;53(6):1258–1271.e1255. DOI:10.1016/j.immuni.2020.11.016. Epub 2020 Nov 1226
  • Weiskopf D, Schmitz KS, Raadsen MP, et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. 2020;5(48):eabd2071. DOI:10.1126/sciimmunol.abd2071.
  • Meckiff BJ, Ramírez-Suástegui C, Fajardo V, et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4+ T cells in COVID-19. Cell. 2020;183(5):1340–1353.e1316. DOI:10.1016/j.cell.2020.10.001. Epub 2020 Oct 1345
  • Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183(4):996–1012.e19. DOI:10.1016/j.cell.2020.09.038.
  • Tan AT, Linster M, Tan CW, et al., Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 34(6): 108728. 2021. . 10.1016/j.celrep.2021.108728.
  • Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020;183(1):158–168.e114. DOI:10.1016/j.cell.2020.08.017.
  • Bertoletti A, Tan AT, Le Bert N The T-cell response to SARS-CoV-2: kinetic and quantitative aspects and the case for their protective role. Oxford Open Immunol. (2021); 2 1. . 10.1093/oxfimm/iqab006
  • Rahman H, Carter I, Basile K, et al. Interpret with caution: an evaluation of the commercial AusDiagnostics versus in-house developed assays for the detection of SARS-CoV-2 virus. J Clin Virol. 2020;127(104374):104374. DOI:10.1016/j.jcv.2020.104374.
  • Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. Jama. 2020;323(18):1843–1844. DOI:10.1001/jama.2020.3786.
  • Fox-Lewis S, Muttaiyah S, Rahnama F, et al. An understanding of discordant SARS-CoV-2 test results: an examination of the data from a central Auckland laboratory. N Z Med J. 2020;133(1519):81–88.
  • Habibzadeh P, Mofatteh M, Silawi M, et al. Molecular diagnostic assays for COVID-19: an overview. Crit Rev Clin Lab Sci. 2021;17:1–20. DOI: 10.1080/10408363.2021.1884640.
  • Wu J, Liu X, Zhou D, et al. Identification of RT-PCR-negative asymptomatic COVID-19 patients via serological testing. Front Public Health. 2020;8:267. DOI:10.3389/fpubh.2020.00267. eCollection 02020
  • Wang CYT, Buckley C, Bletchly C, et al. Contamination of SARS-CoV-2 RT-PCR probes at the oligonucleotide manufacturer. Pathology. 2020;52(7):814–816.
  • Basile K, Maddocks S, Kok J, et al. Accuracy amidst ambiguity: false positive SARS-CoV-2 nucleic acid tests when COVID-19 prevalence is low. Pathology. 2020;52(7):809–811.
  • Zhang Z, Bi Q, Fang S, et al. Insight into the practical performance of RT-PCR testing for SARS-CoV-2 using serological data: a cohort study. Lancet Microbe. 2021;2(2):e79–e87. DOI:10.1016/S2666-5247(20)30200-7. Epub 32021 Jan 30219
  • Dinnes J, Deeks JJ, Adriano A, et al. Rapid, point‐of‐care antigen and molecular‐based tests for diagnosis of SARS‐CoV‐2 infection. Cochrane Database Syst Rev. 2020;(8). [cited 2021 Mar 28]. DOI: 10.1002/14651858.CD013705.
  • Tan SS, Saw S, Chew KL, et al. Head-to-head evaluation on diagnostic accuracies of six SARS-CoV-2 serological assays. Pathology. 2020;52(7):770–777. DOI:10.1016/j.pathol.2020.09.007.
  • Deeks JJ, Dinnes J, Takwoingi Y, et al. Antibody tests for identification of current and past infection with SARS‐CoV‐2. Cochrane Database Syst Rev. 2020;(6).  [cited 2021 Mar 28]. DOI: 10.1002/14651858.CD013652.
  • Guo X, Zeng L, Huang Z, et al. Longer duration of SARS-CoV-2 infection in a case of mild COVID-19 with weak production of the specific IgM and IgG antibodies. Front Immunol. 2020;11(1936). DOI:10.3389/fimmu.2020.01936
  • Seow J, Graham C, Merrick B, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol. 2020;5(12):1598–1607. DOI:10.1038/s41564-020-00813-8.
  • Röltgen K, Powell AE, Wirz OF, et al. Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci Immunol. 2020;5(54):eabe0240. DOI:10.1126/sciimmunol.abe0240.
  • McAndrews KM, Dowlatshahi DP, Dai J, et al. Heterogeneous antibodies against SARS-CoV-2 spike receptor binding domain and nucleocapsid with implications for COVID-19 immunity. JCI Insight. 2020;5(18). DOI:10.1172/jci.insight.142386.
  • Marklund E, Leach S, Axelsson H, et al. Serum-IgG responses to SARS-CoV-2 after mild and severe COVID-19 infection and analysis of IgG non-responders. PLoS One. 2020;15(10):e0241104. DOI:10.1371/journal.pone.0241104. eCollection 0242020
  • Cota G, Freire ML, De Souza CS, et al. Diagnostic performance of commercially available COVID-19 serology tests in Brazil. Int J Infect Dis. 2020;101:382–390.
  • Gudbjartsson DF, Norddahl GL, Melsted P, et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N Engl J Med. 2020;383(18):1724–1734. DOI:10.1056/NEJMoa2026116.
  • Munro APS, Faust SNCOVID-19. in children: current evidence and key questions. In Current opinion in infectious diseases. 2020;33(6):540-547. DOI: 10.1097/QCO.0000000000000690.
  • Ibarrondo FJ, Fulcher JA, Goodman-Meza D, et al. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid-19. N Engl J Med. 2020;383(11):1085–1087.
  • Naaber P, Hunt K, Pesukova J, et al. Evaluation of SARS-CoV-2 IgG antibody response in PCR positive patients: comparison of nine tests in relation to clinical data. PloS One. 2020;15(10):e0237548. DOI:10.1371/journal.pone.0237548.
  • Chua KYL, Vogrin S, Bittar I, et al. Clinical evaluation of four commercial immunoassays for the detection of antibodies against established SARS-CoV-2 infection. Pathology. 2020;52(7):778–782. DOI:10.1016/j.pathol.2020.09.003.
  • Braun J, Loyal L, Frentsch M, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020;587(7833):270–274. DOI:10.1038/s41586-020-2598-9.
  • Tan CW, Chia WN, Qin X, et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat Biotechnol. 2020;38(9):1073–1078. DOI:10.1038/s41587-020-0631-z.
  • Perera R, Ko R, Tsang OTY, et al. Evaluation of a SARS-CoV-2 surrogate virus neutralization test for detection of antibody in human, canine, cat and hamster sera. J Clin Microbiol. 2020;2:02504–02520.
  • Hou YJ, Chiba S, Halfmann P, et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science. 2020;370(6523):1464–1468. DOI:10.1126/science.abe8499.
  • Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science (New York, N.Y.). 2021;3:10.
  • Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 2020;9DOI:10.7554/eLife.61312. .
  • Fontanet A, Autran B, Lina B, et al. SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet. 2021;11(21):00370–00376.
  • McNally A. What makes new variants of SARS-CoV-2 concerning is not where they come from, but the mutations they contain. BMJ. 2021;372:n504.
  • Liu Z, VanBlargan LA, Bloyet LM, et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe. 2021;27(21):00044–00045.
  • Chen RE, Zhang X, Case JB, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. In: Nature medicine. 2021. https://doi.org/10.1038/s41591-021-01294-w.
  • Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 Coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020;181(7):1489–1501.e1415. DOI:10.1016/j.cell.2020.05.015. Epub 2020 May 1420
  • Le Bert N, Tan AT, Kunasegaran K, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020;584(7821):457–462. DOI:10.1038/s41586-41020-42550-z. Epub 42020 Jul 41515
  • Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020;21(11):1336–1345. .
  • Nelde A, Bilich T, Heitmann JS, et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol. 2020;30(10):020–00808.
  • Ameratunga R, Lederman HM, Sullivan KE, et al. Defective antigen-induced lymphocyte proliferation in the X-linked hyper-IgM syndrome. J Pediatr. 1997;131(1 Pt 1):147–150.
  • Kowitdamrong E, Puthanakit T, Jantarabenjakul W, et al. Antibody responses to SARS-CoV-2 in patients with differing severities of coronavirus disease 2019. PloS One. 2020;15(10):e0240502.
  • Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26(6):845–848.
  • Pierce CA, Preston-Hurlburt P, Dai Y, et al. Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci Transl Med. 2020;12(564):eabd5487. DOI:10.1126/scitranslmed.abd5487. Epub 2020 Sep 5421
  • Rodda LB, Netland J, Shehata L, et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell. 2021;184(1):169–183.e117. DOI:10.1016/j.cell.2020.1011.1029. Epub 2020 Nov 1023
  • Long QX, Tang XJ, Shi QL, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26(8):1200–1204. DOI:10.1038/s41591-41020-40965-41596. Epub 42020 Jun 41518
  • Ameratunga R, Ahn Y, Steele R, et al. Transient hypogammaglobulinaemia of infancy: many patients recover in adolescence and adulthood. Clin Exp Immunol. 2019;198(2):224–232.
  • Ameratunga R, Allan C, Woon ST. Defining common variable immunodeficiency disorders in 2020. Immunol Allergy Clin North Am. 2020;40(3):403–420.
  • Mateus J, Grifoni A, Tarke A, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020;370(6512):89–94. DOI:10.1126/science.abd3871. Epub 2020 Aug 1124
  • Perez-Potti A, Lange J, Buggert M Deciphering the ins and outs of SARS-CoV-2-specific T cells.
  • Lee E, Sandgren K, Duette G, et al. Identification of SARS-CoV-2 nucleocapsid and Spike T-cell epitopes for assessing T-cell immunity. J Virol. 2021;95(6):e02002-20–02020. DOI: 10.1128/JVI.02002-20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.