318
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Regulation of crystal induced inflammation: current understandings and clinical implications

, , , , , & show all
Pages 773-787 | Received 10 Apr 2021, Accepted 27 May 2021, Published online: 18 Jun 2021

References

  • Oliviero F, Bindoli S, Scanu A, et al. Autoinflammatory mechanisms in crystal-induced arthritis. Front Med (Lausanne). 2020;7:166.
  • Niyonzima N, Bakke SS, Gregersen I, et al. Cholesterol crystals use complement to increase NLRP3 signaling pathways in coronary and carotid atherosclerosis. EBioMedicine. 2020;60:102985.
  • Mulay SR, Kulkarni OP, Rupanagudi KV, et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J Clin Invest. 2013;123(1):236–246.
  • Hoy RF, Chambers DC. Silica-related diseases in the modern world. Allergy. 2020;75(11):2805–2817.
  • Mulay SR, Anders HJ. Crystallopathies. N Engl J Med. 2016;374(25):2465–2476.
  • Poloni LN, Ward MD. The materials science of pathological crystals. Chem Mater. 2014;26(1):477–495.
  • Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Investig. 2002;110(7):905–991.
  • Sedaghat A, Grundy SM. Cholesterol crystals and the formation of cholesterol gallstones. N Engl J Med. 1980;302(23):1274–1277.
  • Duewell P, Kono H, Rayner KJ, et al., NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–1361.
  • Lee S, Matsuzaki H, Kumagai-Takei N, et al. Silica exposure and altered regulation of autoimmunity. Environ Health Prev Med. 2014;19(5):322–329].
  • Sheng X. Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J Am Soc Nephrol. 2005;16(7):1904–1908.
  • Abhishek A, Doherty M. Update on calcium pyrophosphate deposition. Clin Exp Rheumatol. 2016;34(4 Suppl 98):32–38.
  • McCarthy GM, Dunne A. Calcium crystal deposition diseases - beyond gout. Nat Rev Rheumatol. 2018;14(10):592–602.
  • Scanu A, Oliviero F, Luisetto R, et al. Effect of pathogenic crystals on the production of pro- and anti-inflammatory cytokines by different leukocyte populations. Immunobiology. 2021;226(1):152042.
  • Baggio C, Sfriso P, Cignarella A, et al. Phagocytosis and inflammation in crystal-induced arthritis: a synovial fluid and in vitro study. Clin Exp Rheumatol. 2020;39(3):494–500. Jul 21 (Epub ahead of print.
  • Ea HK, Chobaz V, Nguyen C, et al. Pathogenic Role of Basic Calcium Phosphate Crystals in Destructive Arthropathies. Plos One. 2013;8(2):e57352.
  • Punzi L, Scanu A, Spinella P, et al. One year in review 2018: gout. Clin Exp Rheumatol. 2019;37(1):1–11.
  • Pascual E, Addadi L, Andrés M, et al. Mechanisms of crystal formation in gout-a structural approach. Nat Rev Rheumatol. 2015;11(12):725–730.
  • Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–241.
  • Li Y, Cao X, Liu Y, et al. Neutrophil Extracellular Traps Formation and Aggregation Orchestrate Induction and Resolution of Sterile Crystal-Mediated Inflammation. Front Immunol. 2018;9:1559.
  • Mulay SR, Desai J, Kumar SV, et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun. 2016;7(1):10274.
  • Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011;243(1):206–214.
  • Gordon S. Phagocytosis: an Immunobiologic Process. Immunity. 2016;44(3):463–475.
  • Liu-Bryan R, Lioté F. Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals, inflammation, and cellular signaling. Joint Bone Spine. 2005;72(4):295–302.
  • Neumann K, Castiñeiras-Vilariño M, Höckendorf U, et al. Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death. Immunity. 2014;40(3):389–399.
  • Terkeltaub R, Zachariae C, Santoro D, et al. Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum. 1991;34(7):894–903.
  • Alberts A, Klingberg A, Hoffmeister L, et al. Binding of Macrophage Receptor MARCO, LDL, and LDLR to Disease-Associated Crystalline Structures. Front Immunol. 2020;11:596103.
  • Alberts A, Klingberg A, Wessig AK, et al. C-reactive protein (CRP) recognizes uric acid crystals and recruits proteases C1 and MASP1. Sci Rep. 2020 Apr 14;10(1):6391. https://doi.org/10.1038/s41598-020-63318-8.
  • Russell IJ, Mansen C, Kolb LM, et al. Activation of the fifth component of human complement (C5) induced by monosodium urate crystals: C5 convertase assembly on the crystal surface. Clin Immunol Immunopathol. 1982;24(2):239–250.
  • Ng G, Sharma K, Ward SM, et al., Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity. 2008;29(5):807–818.
  • Nguyen C, Lieberherr M, Bordat C, et al. Intracellular calcium oscillations in articular chondrocytes induced by basic calcium phosphate crystals lead to cartilage degradation. Osteoarthritis Cartilage. 2012;20(11):1399–1408.
  • Pieterse E, Jeremic I, Czegley C, et al. Blood-borne phagocytes internalize urate microaggregates and prevent intravascular NETosis by urate crystals. Sci Rep. 2016;6(1):38229.
  • Gong T, Yang Y, Jin T, et al. Orchestration of NLRP3 Inflammasome Activation by Ion Fluxes. Trends Immunol. 2018;39(5):393–406.
  • Mu L, Tu Z, Miao L, et al. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun. 2018 Oct 15;9(1):4259.
  • Onai N, Ogasawara C. Calcium Pyrophosphate Dihydrate Crystals Increase the Granulocyte/Monocyte Progenitor (GMP) and Enhance Granulocyte and Monocyte Differentiation In Vivo. Int J Mol Sci. 2020;22(1):262.
  • Guma M, Ronacher L, Liu-Bryan R, et al. 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum. 2009;60(12):3642–3650.
  • Tatsiy O, Mayer TZ, de Carvalho Oliveira V, et al. Cytokine Production and NET Formation by Monosodium Urate-Activated Human Neutrophils Involves Early and Late Events, and Requires Upstream TAK1 and Syk. Front Immunol. 2020 Jan 15;10:2996.
  • Singh AK, Haque M, O’Sullivan K, et al. Suppression of monosodium urate crystal-induced inflammation by inhibiting TGF-β-activated kinase 1-dependent signaling: role of the ubiquitin proteasome system. Cell Mol Immunol. 2021 Jan;18(1):162–170.
  • Galozzi P, Bindoli S, Doria A, et al. The revisited role of interleukin-1 alpha and beta in autoimmune and inflammatory disorders and in comorbidities. Autoimmun Rev. 2021;20(4):102785.
  • Okada M, Matsuzawa A, Yoshimura A, et al. The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. J Biol Chem. 2014;289(47):32926–32936.
  • Campden RI, Zhang Y. The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation. Arch Biochem Biophys. 2019;670:32–42.
  • Huang Q, Gao W, Mu H, et al. HSP60 Regulates Monosodium Urate Crystal-Induced Inflammation by Activating the TLR4-NF-κB-MyD88 Signaling Pathway and Disrupting Mitochondrial Function. Oxid Med Cell Longev. 2020;2020:8706898.
  • Schorn C, Frey B, Lauber K, et al. Sodium overload and water influx activate the NALP3 inflammasome. J Biol Chem. 2011;286(1):35–41.
  • Murakami Y, Matsumoto H, Roh M, et al. Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Proc Natl Acad Sci U S A. 2012;109(36):14598–14603.
  • Malik A, Kanneganti TD. Inflammasome activation and assembly at a glance. J Cell Sci. 2017;130(23):3955–3963.
  • Holzinger D, Nippe N, Vogl T, et al. Myeloid-related proteins 8 and 14 contribute to monosodium urate monohydrate crystal-induced inflammation in gout. Arthritis Rheumatol. 2014;66(5):1327–1339.
  • Crișan TO, Cleophas MC, Oosting M, et al. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann Rheum Dis. 2016;75(4):755–762.
  • An LL, Mehta P, Xu L, et al., Complement C5a potentiates uric acid crystal-induced IL-1β production. Eur J Immunol. 2014;44(12):3669–3679.
  • Shaw OM, Steiger S, Liu X, et al. Brief report: granulocyte-macrophage colony-stimulating factor drives monosodium urate monohydrate crystal-induced inflammatory macrophage differentiation and NLRP3 inflammasome up-regulation in an in vivo mouse model. Arthritis Rheumatol. 2014;66(9):2423–2428.
  • Scanu A, Oliviero F, Gruaz L, et al. Synovial fluid proteins are required for the induction of interleukin-1β production by monosodium urate crystals. Scand J Rheumatol. 2016;45(5):384–393.
  • Joosten LA, Netea MG, Mylona E, et al. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis. Arthritis Rheum. 2010;62(11):3237–3248.
  • Vieira AT, Macia L, Galvão I, et al. A Role for Gut Microbiota and the Metabolite-Sensing Receptor GPR43 in a Murine Model of Gout. Arthritis Rheumatol. 2015;67(6):1646–1656.
  • Hari A, Zhang Y, Tu Z, et al., Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci Rep. 2014;4(1):7281.
  • Mariotte A, De Cauwer A, Po C, et al. A mouse model of MSU-induced acute inflammation in vivo suggests imiquimod-dependent targeting of Il-1β as relevant therapy for gout patients. Theranostics. 2020;10(5):2158–2171.
  • Joosten LA, Netea MG, Fantuzzi G, et al. Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum. 2009;60(12):3651–3662.
  • Desai J, Kumar SV, Mulay SR, et al. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling. Eur J Immunol. 2016;46(1):223–229.
  • Linkermann A, Stockwell BR, Krautwald S, et al. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol. 2014;14(11):759–767.
  • Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–671.
  • Li H, Jiang W, Ye S, et al., P2Y14 receptor has a critical role in acute gouty arthritis by regulating pyroptosis of macrophages. Cell Death Dis. 2020;11(5):394.
  • Oliviero F, Scanu A. How Factors Involved in the Resolution of Crystal-Induced Inflammation Target IL-1β. Front Pharmacol. 2017;8:164.
  • Murakami Y, Akahoshi T, Kawai S, et al. Antiinflammatory effect of retrovirally transfected interleukin-10 on monosodium urate monohydrate crystal-induced acute inflammation in murine air pouches. Arthritis Rheum. 2002;46(9):2504–2513.
  • Landis RC, Yagnik DR, Florey O, et al., Safe disposal of inflammatory monosodium urate monohydrate crystals by differentiated macrophages. Arthritis Rheum. 2002;46(11):3026–3033. https://doi.org/10.1002/art.10614.
  • Galozzi P, Maschio L, Carraro S, et al. M2 macrophages as resolvers of crystal-induced inflammation Rheumatology (Oxford) 2021;60(5):2480-2483. .
  • Liu L, Zhu X, Zhao T, et al. Sirt1 ameliorates monosodium urate crystal-induced inflammation by altering macrophage polarization via the PI3K/Akt/STAT6 pathway. Rheumatology (Oxford). 2019;58(9):1674–1683.
  • Zhang X, Zou Y, Zheng J, et al. lncRNA‑MM2P downregulates the production of pro‑inflammatory cytokines in acute gouty arthritis. Mol Med Rep. 2020;22(3):2227–2234.
  • Li K, Neumann K, Duhan V, et al. The uric acid crystal receptor Clec12A potentiates type I interferon responses. Proc Natl Acad Sci U S A. 2019;116(37):18544–18549.
  • Akahoshi T, Namai R, Murakami Y, et al. Rapid induction of peroxisome proliferator-activated receptor gamma expression in human monocytes by monosodium urate monohydrate crystals. Arthritis Rheum. 2003;48(1):231–239.
  • Getting SJ, Lam CW, Chen AS, et al. Melanocortin 3 receptors control crystal-induced inflammation. FASEB J. 2006;20(13):2234–2241.
  • Duan L, Luo J, Fu Q, et al. Decreased Expression of CD14 in MSU-Mediated Inflammation May Be Associated with Spontaneous Remission of Acute Gout. J Immunol Res. 2019 Jun 13;2019:7143241.
  • Van Avondt K, van der Linden M, Naccache PH, et al. Signal Inhibitory Receptor on Leukocytes-1 Limits the Formation of Neutrophil Extracellular Traps, but Preserves Intracellular Bacterial Killing. J Immunol. 2016;196(9):3686–3694.
  • Pang L, Hayes CP, Buac K, et al. Pseudogout-associated inflammatory calcium pyrophosphate dihydrate microcrystals induce formation of neutrophil extracellular traps. J Immunol. 2013;190(12):6488–6500.
  • Schauer C, Janko C, Munoz LE, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511–517.
  • Jeong JH, Choi SJ, Ahn SM, et al. Neutrophil extracellular trap clearance by synovial macrophages in gout. Arthritis Res Ther. 2021;23(1):88.
  • Scanu A, Luisetto R, Oliviero F, et al. High-density lipoproteins inhibit urate crystal-induced inflammation in mice. Ann Rheum Dis. 2015 Mar;74(3):587–594.
  • Renaudin F, Sarda S, Campillo-Gimenez L, et al. Adsorption of Proteins on m-CPPD and Urate Crystals Inhibits Crystal-induced Cell Responses: study on Albumin-crystal Interaction. J Funct Biomater. 2019;10(2):18.
  • Joosten LA, Crişan TO, Azam T, et al. Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra. Ann Rheum Dis. 2016;75(6):1219–1227.
  • Zhou W, Wang Y, Wu R, et al. MicroRNA-488 and −920 regulate the production of proinflammatory cytokines in acute gouty arthritis. Arthritis Res Ther. 2017;19(1):203.
  • Ma T, Liu X, Cen Z, et al. MicroRNA-302b negatively regulates IL-1β production in response to MSU crystals by targeting IRAK4 and EphA2. Arthritis Res Ther. 2018;20(1):34.
  • Yagnik D. Macrophage derived platelet activating factor implicated in the resolution phase of gouty inflammation. Int J Inflam. 2014;2014:526496.
  • Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21(3):263–269.
  • Cumpelik A, Ankli B, Zecher D, et al. Neutrophil microvesicles resolve gout by inhibiting C5a-mediated priming of the inflammasome. Ann Rheum Dis. 2016;75(6):1236–1245.
  • Chhana A, Dalbeth N. The gouty tophus: a review. Curr Rheumatol Rep. 2015;17:19.
  • Joosten LA, Abdollahi-Roodsaz S, Dinarello CA, et al. Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nat Rev Rheumatol. 2016;12(6):344–357.
  • Liu-Bryan R, Pritzker K, Firestein GS, et al. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol. 2005;174(8):5016–5023.
  • Yagnik DR, Evans BJ, Florey O, et al. Macrophage release of transforming growth factor beta1 during resolution of monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 2004;50(7):2273–2280.
  • Schlesinger N, Thiele RG. The pathogenesis of bone erosions in gouty arthritis. Ann Rheum Dis. 2010;69(11):1907–1912.
  • Kaneko K, Iwamoto H, Yasuda M, et al. Proteomic analysis to examine the role of matrix proteins in a gouty tophus from a patient with recurrent gout. Nucleosides Nucleotides Nucleic Acids. 2014;33(4–6):199–207.
  • Garcia-Gonzalez E, Gamberucci A, Lucherini OM, et al. Neutrophil extracellular traps release in gout and pseudogout depends on the number of crystals regardless of leukocyte count. Rheumatology (Oxford). 2021; keab087. https://doi.org/10.1093/rheumatology/keab087.
  • Chen CJ, Shi Y, Hearn A, et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest. 2006;116(8):2262–2271.
  • Ligthart S, Vaez A, Võsa U, et al. Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. Am J Hum Genet. 2018;103(5):691–706.
  • Merriman TR. An update on the genetic architecture of hyperuricemia and gout. Arthritis Res Ther. 2015;17(1):98.
  • Chang SJ, Tsai PC, Chen CJ, et al. The polymorphism −863C/A in tumour necrosis factor-alpha gene contributes an independent association to gout. Rheumatology (Oxford). 2007;46(11):1662–1666.
  • Rasheed H, McKinney C, Stamp LK, et al. The Toll-Like Receptor 4 (TLR4) Variant rs2149356 and Risk of Gout in European and Polynesian Sample Sets. PLoS One. 2016;11(1):e0147939.
  • Chen Y, Ren X, Li C, et al. CARD8 rs2043211 polymorphism is associated with gout in a Chinese male population. Cell Physiol Biochem. 2015;35(4):1394–1400.
  • McKinney C, Stamp LK, Dalbeth N, et al. Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout. Arthritis Res Ther. 2015;17(1):288.
  • Chang WC, Jan WYJ, Chung WH, et al. Genetic variants of PPAR-gamma coactivator 1B augment NLRP3-mediated inflammation in gouty arthritis. Rheumatology (Oxford). 2017;56(3):457–466.
  • Deng J, Lin W, Chen Y, et al. rs3806268 of NLRP3 gene polymorphism is associated with the development of primary gout. Int J Clin Exp Pathol. 2015;8(10):13747–13752.
  • Delgado-Lista J, Garcia-Rios A, Perez-Martinez P, et al. Interleukin 1B variant-1473G/C (rs1143623) influences triglyceride and interleukin 6 metabolism. J Clin Endocrinol Metab. 2011;96(5):E816–E820.
  • Cleophas MCP, Crişan TO, Klück V, et al. Romidepsin suppresses monosodium urate crystal-induced cytokine production through upregulation of suppressor of cytokine signaling 1 expression. Arthritis Res Ther. 2019;21(1):50.
  • Wang X, Chi J, Dong B, et al. MiR-223-3p and miR-22-3p inhibit monosodium urate-induced gouty inflammation by targeting NLRP3. Int J Rheum Dis. 2021;24(4):599–607.
  • Hu J, Wu H, Wang D, et al. LncRNA ANRIL promotes NLRP3 inflammasome activation in uric acid nephropathy through miR-122-5p/BRCC3 axis. Biochimie. 2019;157:102–110.
  • Xu YT, Leng YR, Liu MM, et al. MicroRNA and long noncoding RNA involvement in gout and prospects for treatment. Int Immunopharmacol. 2020;87:106842.
  • Di Giovine FS, Malawista SE, Nuki G, et al. Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL 1. J Immunol. 1987;138(10):3213–3218.
  • Oliviero F, Zamudio-Cuevas Y, Belluzzi E, et al. Polydatin and Resveratrol Inhibit the Inflammatory Process Induced by Urate and Pyrophosphate Crystals in THP-1 Cells. Foods. 2019;8(11):560.
  • Pazár B, Ea HK, Narayan S, et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J Immunol. 2011;186(4):2495–2502. https://doi.org/10.4049/jimmunol.1001284.
  • Bousoik E, Qadri M, Elsaid KA. CD44 Receptor Mediates Urate Crystal Phagocytosis by Macrophages and Regulates Inflammation in A Murine Peritoneal Model of Acute Gout. Sci Rep. 2020;10(1):5748.
  • Giamarellos-Bourboulis EJ, Mouktaroudi M, Bodar E, et al. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 beta by mononuclear cells through a caspase 1-mediated process. Ann Rheum Dis. 2009;68(2):273–278.
  • Luz HL, Reichel M, Unwin RJ, et al. P2X7 Receptor Stimulation Is Not Required for Oxalate Crystal-Induced Kidney Injury. Sci Rep. 2019 Dec 27;9(1):20086.
  • Mylona EE, Mouktaroudi M, Crisan TO, et al. Enhanced interleukin-1β production of PBMCs from patients with gout after stimulation with Toll-like receptor-2 ligands and urate crystals. Arthritis Res Ther. 2012 Jul 4;14(4):R158.
  • Braga TT, Forni MF, Correa-Costa M, et al. Soluble uric acid activates the NLRP3 inflammasome. Sci Rep. 2017;7(1):39884.
  • Ma Q, Honarpisheh M, Li C, et al. Soluble Uric Acid Is an Intrinsic Negative Regulator of Monocyte Activation in Monosodium Urate Crystal-Induced Tissue Inflammation. J Immunol. 2020;205(3):789–800.
  • Davidsson L, Dahlstrand Rudin A, Sanchez Klose FP, et al. In Vivo Transmigrated Human Neutrophils Are Highly Primed for Intracellular Radical Production Induced by Monosodium Urate Crystals. Int J Mol Sci. 2020;21(11):3750.
  • Scanu A, Oliviero F, Gruaz L, et al. High-density lipoproteins downregulate CCL2 production in human fibroblast-like synoviocytes stimulated by urate crystals. Arthritis Res Ther. 2010;12(1):R23.
  • Zamudio-Cuevas Y, Martínez-Flores K, Fernández-Torres J, et al. Monosodium urate crystals induce oxidative stress in human synoviocytes. Arthritis Res Ther. 2016;18(1):117.
  • Carlson AK, McCutchen CN, June RK. Mechanobiological implications of articular cartilage crystals. Curr Opin Rheumatol. 2017;29(2):157–162.
  • Nasi S, Castelblanco M, Chobaz V, et al. Xanthine Oxidoreductase Is Involved in Chondrocyte Mineralization and Expressed in Osteoarthritic Damaged Cartilage. Front Cell Dev Biol. 2021 Feb;9(9):612440.
  • Bertrand J, Kräft T, Gronau T, et al. BCP crystals promote chondrocyte hypertrophic differentiation in OA cartilage by sequestering Wnt3a. Ann Rheum Dis. 2020 Jul;79(7):975–984.
  • Wu X, Wakamiya M, Vaishnav S, et al. Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci U S A. 1994;91(2):742–746.
  • Oliviero F, Galozzi P, Scanu A, et al. Polydatin Prevents Calcium Pyrophosphate Crystal-Induced Arthritis in Mice. Nutrients. 2021;13(3):929.
  • Nasi S, So A, Combes C, et al. Interleukin-6 and chondrocyte mineralization act in tandem to promote experimental osteoarthritis. Ann Rheum Dis. 2016;75(7):1372–1379. https://doi.org/10.1136/annrheumdis-2015-207487.
  • Nasi S, HK EA, So A, et al. Revisiting the role of Interleukin 1α and 1β and NLRP3 inflammasome are not involved in the pathological features of murine meniscectomy model of osteoarthritis. Front Pharmacol. 2017;8:282.
  • Martin WJ, Walton M, Harper J. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis Rheum. 2009;60(1):281–289.
  • Liu-Bryan R, Scott P, Sydlaske A, et al. Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum. 2005;52(9):2936–2946. https://doi.org/10.1002/art.21238.
  • Masuda I, Hirose J. Animal models of pathologic calcification. Curr Opin Rheumatol. 2002;14(3):287–291.
  • Gurley KA, Chen H, Guenther C, et al. Mineral formation in joints caused by complete or joint-specific loss of ANK function. J Bone Miner Res. 2006;21(8):1238–1247.
  • Li Q, Pratt CH, Dionne LA, et al. Spontaneous asj-2J mutant mouse as a model for generalized arterial calcification of infancy: a large deletion/insertion mutation in the Enpp1 gene. PLoS One. 2014;9(12):e113542.
  • Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.
  • Kuro-O M. Phosphate as a Pathogen of Arteriosclerosis and Aging. J Atheroscler Thromb. 2021;28(3):203–213.
  • Richette P, Doherty M, Pascual E, et al. 2018 updated European League Against Rheumatism evidence-based recommendations for the diagnosis of gout. Ann Rheum Dis. 2020;79(1):31–38.
  • FitzGerald JD, Dalbeth N, Mikuls T, et al. American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res (Hoboken). 2020;72(6):744–760. https://doi.org/10.1002/acr.24180.
  • Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14(5):454–460.
  • Phelps R. Appearance of chemotactic activity followingintracellular injection of monosodium urate crystals: effect of colchicine. J Lab Clin Med. 1970;71:622–631. Caner JEZ. Colchicine inhibition of chemotaxis.Arthritis Rheum. 1965;8:757–64.
  • Chia EW, Grainger R, Harper JL. Colchicine suppresses neutrophil superoxide production in a murine model of gouty arthritis: a rationale for use of low-dose colchicine. Br J Pharmacol. 2008;153(6):1288–1295.
  • Paya M, Terencio MC, Ferrandiz ML, et al. Involvement of secretory phospholipase A2 activity in the zymosan air pouch model of inflammation. Br J Pharmacol. 1996;117(8):1773–1779.
  • So A, De Meulemeester M, Pikhlak A, et al. Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II, dose-ranging study. Arthritis Rheum. 2010;62(10):3064–3076.
  • Schlesinger N, Alten RE, Bardin T, et al., Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis. 2012;71(11):1839–1848.
  • ema.europa.eu [Internet], Amsterdam: EMA [Updated 31/01/2020 Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/ilaris Last accession on 10/04/2021
  • So A, De Smedt T, Revaz S, et al. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther. 2007;9(2):R28.
  • Ghosh P, Cho M, Rawat G, et al. Treatment of acute gouty arthritis in complex hospitalized patients with anakinra. Arthritis Care Res (Hoboken). 2013;65(8):1381–1384.
  • Terkeltaub RA, Schumacher HR, Carter JD, et al. Rilonacept in the treatment of acute gouty arthritis: a randomized, controlled clinical trial using indomethacin as the active comparator. Arthritis Res Ther. 2013;15(1):R25.
  • Zahid A, Li B, Kombe AJK, et al. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol. 2019;10:2538.
  • Lamkanfi M, Mueller JL, Vitari AC, et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol. 2009;187(1):61–70.
  • Jiang H, He H, Chen Y, et al., Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 2017;214(11):3219–3238.
  • Klück V, Jansen TLTA, Janssen M, et al. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2020;2(5):e270–e280.
  • He H, Jiang H, Chen Y, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018;9(1):2550.
  • Choi N, Yang G, Jang JH, et al. Loganin Alleviates Gout Inflammation by Suppressing NLRP3 Inflammasome Activation and Mitochondrial Damage. Molecules. 2021;26(4):1071.
  • Lin X, Wang H, An X, et al. Baeckein E suppressed NLRP3 inflammasome activation through inhibiting both the priming and assembly procedure: implications for gout therapy. Phytomedicine. 2021;84:153521.
  • Chiu HW, Li LH, Hsieh CY, et al. Glucosamine inhibits IL-1β expression by preserving mitochondrial integrity and disrupting assembly of the NLRP3 inflammasome. Sci Rep. 2019;9(1):5603.
  • Clarke J. β-carotene blocks the inflammasome. Nat Rev Rheumatol. 2020;16(5):248.
  • Qiao CY, Li Y, Shang Y, et al. Management of Gout-associated MSU crystals-induced NLRP3 inflammasome activation by procyanidin B2: targeting IL-1β and Cathepsin B in macrophages. Inflammopharmacology. 2020;28(6):1481–1493.
  • Yin C, Liu B, Wang P, et al. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br J Pharmacol. 2020;177(9):2042–2057.
  • Chen B, Li H, Ou G, et al. Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res Ther. 2019;21(1):193.
  • Ahn H, Lee GS. Riboflavin, vitamin B2, attenuates NLRP3, NLRC4, AIM2, and non-canonical inflammasomes by the inhibition of caspase-1 activity. Sci Rep. 2020;10(1):19091.
  • Dhanasekar C, Kalaiselvan S, Rasool M. Morin, a Bioflavonoid Suppresses Monosodium Urate Crystal-Induced Inflammatory Immune Response in RAW 264.7 Macrophages through the Inhibition of Inflammatory Mediators, Intracellular ROS Levels and NF-κB Activation. PLoS One. 2015;10(12):e0145093.
  • Yan Y, Jiang W, Spinetti T, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38(6):1154–1163.
  • Li X, Pan Y, Li W, et al. The role of noncoding RNAs in Gout. Endocrinology. 2020;161(11):bqaa165.
  • Zhang QB, Qing YF, Yin CC, et al. Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome. Arthritis Res Ther. 2018;20(1):45.
  • Liu P, Chen Y, Wang B, et al. Expression of microRNAs in the plasma of patients with acute gouty arthritis and the effects of colchicine and etoricoxib on the differential expression of microRNAs. Arch Med Sci. 2019;15(4):1047–1055.
  • Ding XQ, Wu WY, Jiao RQ, et al. Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacol Res. 2018;137:64–75.
  • Wang W, Ding XQ, Gu TT, et al. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377. Free Radic Biol Med. 2015;83:214–226.
  • Zhao XJ, Yu HW, Yang YZ, et al. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol. 2018;18:124–137.
  • Wang Y. Tripterine ameliorates monosodium urate crystal-induced gouty arthritis by altering macrophage polarization via the miR-449a/NLRP3 axis. Inflamm Res. 2021;70(3):323–341.
  • McCarty DJ Jr. Crystal-induced inflammation; syndromes of gout and pseudogout. Geriatrics. 1963 Jun;18:467–478.
  • McCarty DJ Jr, Phelps P, Pyenson J. Crystal-induced inflammation in canine joints. I. An experimental model with quantification of the host response. J Exp Med. 1966;124(1):99–114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.