346
Views
5
CrossRef citations to date
0
Altmetric
Review

Recent insights into the pathogenesis of autoimmune hypophysitis

, , , , , & show all
Pages 1175-1185 | Received 26 Jun 2021, Accepted 26 Aug 2021, Published online: 06 Sep 2021

References

  • Caturegli P, Newschaffer C, Olivi A, et al. Autoimmune hypophysitis. Endocr Rev. 2005;26(5):599–614.
  • Karaca Z, Kelestimur F. Pregnancy and other pituitary disorders (including GH deficiency). Best Pract Res Clin Endocrinol. 2011;25(6):897–910
  • Lupi I, Zhang J, Gutenberg A, et al. From pituitary expansion to empty sella: disease progression in a mouse model of autoimmune hypophysitis. Endocrinology. 2011;152(11):4190–4198.
  • Karaca Z, Tanriverdi F, Donmez H, et al. Empty sella may be the final outcome in lymphocytic hypophysitis. Endocrine Res. 2009;34(1–2):10–17.
  • Unluhizarci K, Bayram F, Çolak R, et al. Distinct radiological and clinical appearance of lymphocytic hypophysitis. J Clin Endocrinol Metabol. 2001;86(5):1861–1864.
  • Guaraldi F, Giordano R, Grottoli S, et al. Pituitary autoimmunity. Front Horm Res. 2017;48:48–68.
  • Ruggeri RM, Giuffrida G, Campennì A. Autoimmune endocrine diseases. Minerva Endocrinol. 2018;43(3):305–322.
  • Caturegli P, Lupi I, Landek-Salgado M, et al. Pituitary autoimmunity: 30 years later. Autoimmun Rev. 2008;7(8):631–637.
  • Allix I, Rohmer V. Hypophysitis in 2014. Ann Endocrinol (Paris). 2015;76(5):585–594.
  • Abe T. Lymphocytic infundibulo-neurohypophysitis and infundibulo-panhypophysitis regarded as lymphocytic hypophysitis variant. Brain Tumor Pathol. 2008;25(2):59–66.
  • Mirocha S, Elagin RB, Salamat S, et al. T regulatory cells distinguish two types of primary hypophysitis. Clin Exp Immunol. 2009;155(3):403–411.
  • Tanriverdi F, De Bellis A, Bizzarro A, et al. Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity? Eur J Endocrinol. 2008;159(1):7–13.
  • Patti G, Calandra E, De Bellis A, et al. Antibodies against hypothalamus and pituitary gland in childhood-onset brain tumors and pituitary dysfunction. Front Endocrinol. 2020;11:16.
  • Chalan P, Thomas N, Caturegli P. Th17 cells contribute to the pathology of autoimmune hypophysitis. J Immunol. 2021;206(11):2536–2543. ji1901212.
  • Heaney AP, Sumerel B, Rajalingam R, et al. HLA markers DQ8 and DR53 are associated with lymphocytic hypophysitis and may aid in differential diagnosis. J Clin Endocrinol Metabol. 2015;100(11):4092–4097.
  • Bellastella G, Maiorino MI, Bizzarro A, et al. Revisitation of autoimmune hypophysitis: knowledge and uncertainties on pathophysiological and clinical aspects. Pituitary. 2016;19(6):625–642.
  • Chiloiro S, Capoluongo ED, Tartaglione T, et al. Human leucocyte antigens coeliac haplotypes and primary autoimmune hypophysitis in caucasian patients. Clin Endocrinol (Oxf). 2018;88(5):692–699.
  • Bellastella G, Maiorino MI, Cirillo P, et al. Remission of pituitary autoimmunity induced by gluten-free diet in patients with celiac disease. J Clin Endocrinol Metab. 2020;105(7):dgz228.
  • Lupi I, Broman KW, Tzou SC, et al. Novel autoantigens in autoimmune hypophysitis. Clin Endocrinol (Oxf). 2008;69(2):269–278.
  • Bottazzo GF, Pouplard A, Florin-Christensen A, et al. Autoantibodies to prolactin-secreting cells of human pituitary. Lancet. 1975;2(7925):97–101.
  • Crock PA. Cytosolic autoantigens in lymphocytic hypophysitis. J Clin Endocrinol Metab. 1998;83:609–618.
  • O’Dwyer DT, Smith AI, Matthew ML, et al. Identification of the 49-kDa autoantigen associated with lymphocytic hypophysitis as alpha-enolase. J Clin Endocrinol Metab. 2002;87(2):752–757.
  • Takao T, Nanamiya W, Matsumoto R, et al. Antipituitary antibodies in patients with lymphocytic hypophysitis. Horm Res. 2001;55:288–292.
  • Tanaka S, Tatsumi KI, Kimura M, et al. Detection of autoantibodies against the pituitary-specific proteins in patients with lymphocytic hypophysitis. Eur J Endocrinol. 2002;147:767–775.
  • Prete A, Salvatori R. Hypophysitis. [Updated 2018 Aug 15]. Feingold KR, Anawalt B, Boyce A et al. editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc. 2000Available from. https://www.ncbi.nlm.nih.gov/books/NBK519842/
  • Bensing S, Hulting AL, Hoog A, et al. Lymphocytic hypophysitis: report of two biopsy proven cases and one suspected case with pituitary autoantibodies. J Endocrinol Invest. 2007;30(2):153–162.
  • Iwama S, Sugimura Y, Kiyota A, et al. Rabphilin-3A as a targeted autoantigen in lymphocytic infundibulo-neurohypophysitis. J Clin Endocrinol Metabol. 2015;100(7):E946–E954.
  • Yasuda Y, Iwama S, Kiyota A, et al. Critical role of rabphilin-3A in the pathophysiology of experimental lymphocytic neurohypophysitis. J Pathol. 2018;244(4):469–478.
  • Ricciuti A, De Remigis A, Landek-Salgado MA, et al. Detection of pituitary antibodies by immunofluorescence: approach and results in patients with pituitary diseases. J Clin Endocrinol Metab. 2014;99(5):1758–1766.
  • Chiloiro S, Giampietro A, Angelini F, et al. Markers of humoral and cell-mediated immune response in primary autoimmune hypophysitis: a pilot study. Endocrine. 2021;87(2):752–757.
  • Wei Q, Yang G, Lue Z, et al. Clinical aspects of autoimmune hypothalamitis, a variant of autoimmune hypophysitis: experience from one center. J Int Med Res. 2019;48:300060519887832.
  • Niri T, Horie I, Kawahara H, et al. A case of isolated hypothalamitis with a literature review and a comparison with autoimmune hypophysitis. Endocr J. 2021;68(1):119–127.
  • Bianchi A, Mormando M, Doglietto F, et al. Hypothalamitis: a diagnostic and therapeutic challenge. Pituitary. 2014;17(3):197–202.
  • Türe U, De Bellis A, Harput MV, et al. Hypothalamitis: a novel autoimmune endocrine disease. a literature review and case report. Clin Endocrinol Metab. 2021;106:e415–e429.
  • Caterugli P, Iwama S. From Japan with love: another tessera in the hypophysitis mosaic. JCEM. 2013;98(5):1865–1868.
  • Imber BS, Lee HS, Kunwar S, et al. Hypophysitis: a single-center case series. Pituitary. 2015;18(5):630–641.
  • Honegger J, Schlaffer S, Menzel C, et al. Diagnosis of primary hypophysitis in Germany. J Clin Endocrinol Metab. 2015;100(10):3841–3849.
  • Korkmaz OP, Sahin S, Ozkaya HM, et al. Primary hypophysitis: experience of a single tertiary center. Exp Clin Endocrinol Diabetes. 2021;129(1):14–21.
  • Hunn BHM, Martin WG, SJr S, et al. Idiopathic granulomatous hypophysitis: a systematic review of 82 cases in the literature. Pituitary. 2014;17(4):357–365.
  • Rao S, Mahadevan A, Maiti T, et al. Granulomatous and lymphocytic hypophysitis - are they immunologically distinct? APMIS. 2016;124(12):1072–1077.
  • Gutemberg A, Hans V, Puchner MJA, et al. Primary hypophysitis: clinical-pathological correlations. Eur J Endocrinol. 2006;155(1):101–107.
  • Xu Y, Lou L, Wang T-H, et al. Granulomatous hypophysitis: experience with eight surgical cases of a single center. Chin Neurosurg J. 2016;2(1):1–10.
  • Wehbeh L, Alreddawi S, Salvatori R. Hypophysitis in the era of immune checkpoint inhibitors and immunoglobulin G4-related disease. Expert Rev Endocrinol Metab. 2019;14(3):167–178.
  • Masaki Y, Kurose N, Yamamoto M, et al. Cut-off values of serum IgG4 and histopathological IgG4+ plasma cells for diagnosis of patients with IgG4-related disease. Int J Rheumatol. 2012;012:580814.
  • Kanie K, Bando H, Iguchi G, et al. IgG4-related hypophysitis in patients with autoimmune pancreatitis. Pituitary. 2019;22(1):54–61.
  • Shikuma J, Kenshi K, Ito R, et al., Critical review of IgG4-related hypophysitis. Pituitary. 20(2): 282–291. 2017.
  • Leporati P, Landek-Salgado MA, Lupi I, et al. IgG4-Related hypophysitis: a new addition to the hypophysitis spectrum. J Clin Endocrinol Metab. 2011;96(7):1971–1980.
  • Wallace ZS, Naden RP, Chari S, et al. The 2019 American college of rheumatology/European league against rheumatism classification criteria for IgG4-related disease. Ann Rheum Dis. 2020;79(1):77–87.
  • Tsuboi H, Matsuo N, Iizuka M, et al. Analysis of IgG4 class switch-related molecules in IgG4-related disease. Arthritis Res Ther. 2012;14(4):R171.
  • Umehara H, Nakajima A, Nakamura T, et al. IgG4-related disease and its pathogenesis cross-talk between innate and acquired immunity. Intern Immunolo. 2014;26(11):585–595.
  • Umehara H, Okazaki K, Kawano M, et al. The front line of research into immunoglobulin G4-related disease – do autoantibodies cause immunoglobulin G4-related disease? Mod Rheumatol. 2019;29(2):214–218.
  • Ishikawa Y, Terao C. Genetic analysis of IgG4-related disease. Mod Rheumatol. 2019;30:1–7.
  • Masaki Y, Dong L, Kurose N, et al. Proposal for a new clinical entity, IgG4-positive multiorgan lymphoproliferative syndrome: analysis of 64 cases of IgG4-related disorders. Ann Rheumatic Dis. 2009;68(8):1310–1315.
  • Bernreuther C, Illies C, Flitsch J, et al. IgG4-related hypophysitis is highly prevalent among cases of histologically confirmed hypophysitis. Brain Pathol. 2017;27(6):839–845.
  • Vasaitis L, Wikström J, Ahlström S, et al. Histopathological findings in the landscape of IgG4-related pathology in patients with pituitary dysfunction: review of six cases. J Neuroendocrinol. 2021;33(3):e12942.
  • Yuen KCJ, Moloney KJ, Mercado JU, et al. A case series of atypical features of patients with biopsy-proven isolated IgG4-related hypophysitis and normal serum IgG4 levels. Pituitary. 2018;21(3):238–246.
  • Pal R, Chatterjee D, Singla R, et al. Co-occurrence of craniopharyngioma and IgG4-related hypophysitis: an epiphenomenon or a mere coincidence? World Neurosurg. 2020;136:193–197.
  • Ruggeri RM, Campennì A, Giuffrida G, et al. Endocrine and metabolic adverse effects of immune checkpoint inhibitors: an overview (what endocrinologists should know). J Endocrinol Invest. 2019;42(7):745–756.
  • Lindsten T, Lee KP, Harris ES, et al. Characterization of CTLA-4 structure and expression on human T cells. J Immunol. 1993;151:3489–3499.
  • Buchbinder EI, Desai ACTLA-4. and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106.
  • Fallarino F, Fields PE, Gajewski TF. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J Exp Med. 1998;188(1):205–210.
  • Egen JG, Kuhns MS, Allison JPCTLA-4. new insights into its biological function and use in tumor immunotherapy. Nat Immunol. 2002;3(7):611–618.
  • Okazaki T, The HT. PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006;27(4):195–201.
  • Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–1034.
  • Latchman Y, Wood CR, Chernova T, et al. PDL2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–268.
  • Ishida M, Iwai Y, Tanaka Y, et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett. 2002;84(1):57–62.
  • Okazaki T, Honjo TPD-1. and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813–824.
  • Butte MJ, Keir ME, Phamduy TB, et al. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27(1):111–122.
  • Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170:1120-1133.
  • Barroso-Sousa R, Barry WT, Garrido-Castro AC, et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens a systematic review and meta-analysis. JAMA Oncol. 2018;4(2):173–182.
  • de Filette J, Andreescu CE, Cools F, et al. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm Metab Res. 2019;51(3):145–156.
  • Caturegli P, Di Dalmazi G, Lombardi, et al. Hypophysitis secondary to cytotoxic t-lymphocyte–associated protein 4 blockade: insights into pathogenesis from an autopsy series. Am J Pathology. 2016;186(12):3225–3235.
  • Faje AT, Sullivan R, Lawrence D, et al. Ipilimumab-induced hypophysitis: a detailed longitudinal analysis in a large cohort of patients with metastatic melanoma. J Clin Endocrinol Metab. 2014;99(11):4078–4085.
  • Iwama S, De Remigis A, Callahan MK, et al. Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med. 2014;6(230):230ra45.
  • Mei Y, Bi WL, Greenwald NF, et al. Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors. Oncotarget. 2016;7(47):76565–76576.
  • Luna RML, Körmendy D, Brunner, et al. Female-biased incidence of experimental autoimmune encephalomyelitis reflects sexually dimorphic expression of surface CTLA-4 (CD152) on T lymphocytes. Gend Med. 2010;7(4):296–308.
  • Tahir SA, Gao J, Miura Y, et al. Autoimmune antibodies correlate with immune checkpoint therapy-induced toxicities. Proc Natl Acad Sci USA. 2019;116(44):22246e51.
  • Leiter A, Gnjatic S, Fowkes M, et al. A common pituitary autoantibody in two patients with immune checkpoint inhibitor-mediated hypophysitis: zcchc8. AACE Clin Case Rep. 2020;6(4):e151–e160.
  • Kobayashi T, Iwama S, Sugiyama D, et al. Anti-pituitary antibodies and susceptible human leukocyte antigen alleles as predictive biomarkers for pituitary dysfunction induced by immune checkpoint inhibitors. J Immunother Cancer. 2021;9(5):e002493.
  • Kanie K, Iguchi G, Bando H, et al. Mechanistic insights into immune checkpoint inhibitor-related hypophysitis: a form of paraneoplastic syndrome Cancer Immunol. Immunother. 2021. https://doi.org/10.1007/s00262-021-02955-y.
  • Iguchi G, Bando H, Takahashi Y. A novel clinical entity of autoimmune endocrinopathy: anti-PIT-1 antibody syndrome. Front Horm Res. 2017;48:76–83.
  • Yamamoto M, Iguchi G, Takeno R, et al. Adult combined GH, prolactin, and TSH deficiency associated with circulating PIT-1 antibody in humans. J Clin Invest. 2011;121(1):113–119.
  • Bando H, Iguchi G, Fukuoka H, et al. Involvement of PIT-1-reactive cytotoxic T lymphocytes in anti-PIT-1 antibody syndrome. J Clin Endocrinol Metab. 2014;99(9):E1744–E1749.
  • Bando H, Iguchi G, Okimura Y, et al. A novel thymoma-associated autoimmune disease: anti-PIT-1 antibody syndrome. Sci Rep. 2017;7(1):43060.
  • Kanie K, Iguchi G, Inuzuka M, et al. Two cases of anti-PIT-1 hypophysitis exhibited as a form of paraneoplastic syndrome not associated with thymoma. J Endocr Soc. 2020;5(3):bvaa194.
  • Kanie K, Bando H, Iguchi G, et al. Pathogenesis of Anti–PIT-1 antibody syndrome: PIT-1 presentation by HLA class I on anterior pituitary cells. J Endocrine Society. 2019; 3: 1969–1978.
  • Bando H, Iguchi G, Kanie K, et al. Isolated adrenocorticotropic hormone deficiency as a form of paraneoplastic syndrome. Pituitary. 2018;21(5):480–489.
  • Yamamoto M, Iguchi G, Bando H, et al. Autoimmune pituitary disease: new concepts with clinical implications. Endocr Rev. 2020;41(2):261–272.
  • Hao L, Zhao X, Zhang B, et al. Positive expression of proopiomelanocortin (POMC) is a novel independent poor prognostic marker in surgically resected non-small cell lung cancer. Tumour Biol. 2015;36(3):1811–1817.
  • Wang Y, Thomas A, Lau C, et al. Mutations of epigenetic regulatory genes are common in thymic carcinomas. Sci Rep. 2014;4(1):7336.
  • Saito M, Fujiwara Y, Asao T, et al. The genomic and epigenomic landscape in thymic carcinoma. Carcinogenesis. 2017;38(11):1084–1091.
  • Ye L, Li X, Kong X, et al. Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids. J Endocrinol. 2005;185(2):337–343.
  • Kumari N, Dwarakanath BS, Das A, et al. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 2016;37:11553–11572.
  • Bhoelan S, Langerak T, Noack D, et al. Hypopituitarism after orthohantavirus infection: what is currently known? Viruses. 2019;11(4):340.
  • Tarvainen M, Mäkelä S, Mustonen J, et al. Autoimmune polyendocrinopathy and hypophysitis after puumala orthohantavirus infection. Endocrinol Diabetes Metab Case Rep. 2016;2016:16–0084.
  • Jost C, Krausse R, Graninger W, et al. Transient hypopituitarism in a patient with nephropathia epidemica. BMJ Case Rep. 2009;2009. DOI:https://doi.org/10.1136/bcr.02.2009.1538. bcr02.2009.1538.
  • Ruggeri RM, Campennì A, Deandreis D, et al. SARS-COV-2-related immune-inflammatory thyroid disorders: facts and perspectives.Expert. Rev Clin Immunol. 2021; 1–23 https://doi.org/10.1080/1744666X.2021.1932467]
  • Giovanella L, Ruggeri RM, Ovčariček PP, et al. Prevalence of thyroid dysfunction in patients with COVID-19: a systematic review. Clin Transl Imaging. 2021;1–8. https://doi.org/10.1007/s40336-021-00419-y.
  • Pascual-Goñi E, Fortea J, Martínez-Domeño A, et al. COVID-19-associated ophthalmoparesis and hypothalamic involvement. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e823.
  • Han T, Kang J, Li G, et al. Analysis of 2019-nCoV receptor ACE2 expression in different tissues and its significance study. Ann Transl Med. 2020;8(17):1077.
  • Piticchio T, Le Moli R, Tumino D, et al. Relationship between betacoronaviruses and the endocrine system: a new key to understand the COVID-19 pandemic-A comprehensive review. J Endocrinol Invest. 2021 Feb 13;1–18. https://doi.org/10.1007/s40618-020-01486-0
  • Zhang QL, Ding YQ, Hou JL, et al. Detection of severe acute respiratory syndrome (SARS)-associated coronavirus RNA in autopsy tissues with in situ hybridization. J First Med Univ. 2003; 23: 1125–1127
  • Ding Y, He L, Zhang Q, Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622–630.
  • Leow MK, Kwek DS, Ng AW, et al. Hypocortisolism in survivors of severe acute respiratory syndrome (SARS). Clin Endocrinol (Oxf). 2005;63(2):197–202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.