306
Views
0
CrossRef citations to date
0
Altmetric
Review

Hematopoietic stem cell transplantation in systemic autoinflammatory diseases - the first one hundred transplanted patients

, , ORCID Icon & ORCID Icon
Pages 667-689 | Received 11 Jan 2022, Accepted 13 May 2022, Published online: 27 May 2022

References

  • Chan AY, Leiding JW, Liu X, et al. Hematopoietic cell transplantation in patients with primary immune regulatory disorders (PIRD): a primary immune deficiency treatment consortium (PIDTC) survey. Front Immunol. 2020;11:1–7.
  • Chan AY, Torgerson TR. Primary immune regulatory disorders: a growing universe of immune dysregulation. Curr Opin Allergy Clin Immunol. 2020;20(6):582–590.
  • Arnold DE, Chellapandian D, Leiding JW. The use of biologic modifiers as a bridge to hematopoietic cell transplantation in primary immune regulatory disorders. Front Immunol. 2021;12:1–11.
  • Lankester AC, Albert MH, Booth C, et al. EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplant. 2021;56(9):2052–2062.
  • Di Donato G, D’angelo DM, Breda L, et al. Monogenic autoinflammatory diseases: state of the art and future perspectives. Int J Mol Sci. 2021;22(12):6360.
  • Nigrovic PA, Lee PY, Hoffman HM. Monogenic autoinflammatory disorders: conceptual overview, phenotype, and clinical approach. J Allergy Clin Immunol. 2020;146(5):925–937.
  • Papa R, Picco P, Gattorno M. The expanding pathways of autoinflammation: a lesson from the first 100 genes related to autoinflammatory manifestations. Adv Protein Chem Struct Biol. 2020;120:1–44.
  • Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol. 2021;17(7):405–425.
  • Neven B, Valayannopoulos V, Quartier P, et al. Allogeneic bone marrow transplantation in mevalonic aciduria. N Engl J Med. 2007;356(26):2700–2703.
  • Erdol S, Cekic S, Kılıc SC, et al. Massive ascites in a canakinumab resistant case with MVA leading to bone marrow transplantation. Rheumatol Int. 2016;36(7):1011–1013.
  • Szymanski AM, Dávila Saldaña B, Ferreira CR, et al. Mevalonic aciduria: does stem cell transplant fully cure disease? Pediatr Transplant. 2020;24(1):1–4.
  • Faraci M, Giardino S, Podestà M, et al. Haploidentical α/β T-cell and B-cell depleted stem cell transplantation in severe mevalonate kinase deficiency. Rheumatol. 2021;60(10):4850–4854.
  • Giardino S, Lanino E, Morreale G, et al. Long-term outcome of a successful cord blood stem cell transplant in mevalonate kinase deficiency. Pediatrics. 2015;135(1):e211–15.
  • Kim H, Lee BH, Do H-S, et al. Case report: mevalonic aciduria complicated by acute myeloid leukemia after hematopoietic stem cell transplantation. Front Immunol. 2021;12:1–6.
  • Arkwright PD, Abinun M, Cant AJ. Mevalonic aciduria cured by bone marrow transplantation. N Engl J Med. 2007;357(13):1350.
  • Chaudhury S, Hormaza L, Mohammad S, et al. Liver transplantation followed by allogeneic hematopoietic stem cell transplantation for atypical mevalonic aciduria. Am J Transplant. 2012;12(6):1627–1631.
  • Abinun M, Slatter MA. Haematopoietic stem cell transplantation in paediatric rheumatic disease. Curr Opin Rheumatol. 2021;33(5):387–397.
  • Elfeky R, Shah RM, Unni MNM, et al. New graft manipulation strategies improve the outcome of mismatched stem cell transplantation in children with primary immunodeficiencies. J Allergy Clin Immunol. 2019;144(1):280–293.
  • Merli P, Pagliara D, Galaverna F, et al. TCRαβ/CD19 depleted HSCT from an HLA-haploidentical relative to treat children with different non-malignant disorders. Blood Adv. 2022 September;6(1):281–292.
  • Slatter MA, Gennery AR. Treosulfan-based conditioning for inborn errors of immunity. Ther Adv Hematol. 2021;12:1–19.
  • Holzinger D, Fassl SK, de Jager W, et al. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J Allergy Clin Immunol. 2015;136(5):1337–1345.
  • Laberko A, Burlakov V, Maier S, et al. HSCT is effective in patients with PSTPIP1-associated myeloid-related proteinemia inflammatory (PAMI) syndrome. J Allergy Clin Immunol. 2021;148(1):250–55.e1.
  • Milledge J, Shaw PJ, Mansour A, et al. Allogeneic bone marrow transplantation: cure for familial Mediterranean fever. Blood. 2002;100(3):774–777.
  • Mori T, Saburi M, Hagihara M, et al. Long-term remission of cryopyrin-associated periodic syndrome after allogeneic haematopoietic stem cell transplantation. Ann Rheum Dis. 2020;80(4):542–543.
  • Heiblig M, Patel BA, Groarke EM, et al. Toward a pathophysiology inspired treatment of VEXAS syndrome. Semin Hematol. 2021;58(4):239–246.
  • Wiseman DH, May A, Jolles S, et al. A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood. 2013;122(1):112–123.
  • Chakraborty PK, Schmitz-Abe K, Kennedy EK, et al. Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD). Blood. 2014;124(18):2867–2871.
  • Kumaki E, Tanaka K, Imai K, et al. Atypical SIFD with novel TRNT1 mutations: a case study on the pathogenesis of B-cell deficiency. Int J Hematol. 2019;109(4):382–389.
  • Wedatilake Y, Niazi R, Fassone E, et al. TRNT1 deficiency: clinical, biochemical and molecular genetic features. Orphanet J Rare Dis. 2016;11(1):90.
  • Standing ASI, Hong Y, Paisan-Ruiz C, et al. TRAP1 chaperone protein mutations and autoinflammation. Life Sci Alliance. 2020;3(2):e201900376.
  • Beck DB, Ferrada MA, Sikora KA, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med. 2020;383(27):2628–2638.
  • Diarra A, Regional CH, Duployez N, et al. Successful allogeneic hematopoietic stem cell transplantation in patients with VEXAS syndrome: a two center experience. Blood Adv. 2022 Feb 8;6(3):998–1003.
  • Luzzatto L, Risitano AM, Notaro R. Mutant UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med. 2021;384(22):2164.
  • Tangye SG, Bucciol G, Casas-Martin J, et al. Human inborn errors of the actin cytoskeleton affecting immunity: way beyond WAS and WIP. Immunol Cell Biol. 2019;97(4):389–402.
  • Papa R, Penco F, Volpi S, et al. Actin remodeling defects leading to autoinflammation and immune dysregulation. Front Immunol. 2021;11:1–11.
  • Dupré L, Boztug K, Pfajfer L. Actin dynamics at the T cell synapse as revealed by immune-related actinopathies. Front Cell Dev Biol. 2021;9. DOI:https://doi.org/10.3389/fcell.2021.665519.
  • Kahr WHA, Pluthero FG, Elkadri A, et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun. 2017;8(1):1–14.
  • Somech R, Lev A, Lee YN, et al. Disruption of Thrombocyte and T lymphocyte development by a mutation in ARPC1B. J Immunol. 2017;199(12):4036–4045.
  • Brigida I, Zoccolillo M, Cicalese MP, et al. T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency. Blood. 2018;132(22):2362–2374.
  • Volpi S, Cicalese MP, Tuijnenburg P, et al. A combined immunodeficiency with severe infections, inflammation, and allergy caused by ARPC1B deficiency. J Allergy Clin Immunol. 2019;143(6):2296–2299.
  • Kuijpers TW, Tool ATJ, van der Bijl I, et al. Combined immunodeficiency with severe inflammation and allergy caused by ARPC1B deficiency. J Allergy Clin Immunol. 2017;140(1):273–77.e10.
  • Papadatou I, Marinakis N, Botsa E, et al. Case report: a novel synonymous ARPC1B gene mutation causes a syndrome of combined immunodeficiency, asthma, and allergy with significant intrafamilial clinical heterogeneity. Front Immunol. 2021;12:1–7.
  • Lam MT, Coppola S, Krumbach OHF, et al. A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function. J Exp Med. 2019;216(12):2778–2799.
  • Gernez Y, de Jesus AA, Alsaleem H, et al. Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1β inhibition. J Allergy Clin Immunol. 2019;144(4):1122–25.e6.
  • Bekhouche B, Tourville A, Ravichandran Y, et al. A toxic palmitoylation of Cdc42 enhances NF-κB signaling and drives a severe autoinflammatory syndrome. J Allergy Clin Immunol. 2020;146(5):1201–04.e8.
  • Verboon JM, Mahmut D, Kim AR, et al. Infantile myelofibrosis and myeloproliferation with CDC42 dysfunction. J Clin Immunol. 2020;40(4):554–566.
  • Standing ASI, Malinova D, Hong Y, et al. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin regulatory gene WDR1. J Exp Med. 2017;214(1):59–71.
  • Millstead J, Kamat A, Duffner U, et al. WD repeat domain 1 (WDR1) deficiency presenting as a cause of infantile inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2020;71(4):e113–17.
  • Kuhns DB, Fink DL, Choi U, et al. Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood. 2016;128(17):2135–2143.
  • Manna R, Rigante D. The everchanging framework of autoinflammation. Intern Emerg Med. 2021;16(7):1759–1770.
  • Oda H, Kastner DL. G e n o m i c s, B i o l o g y, and human illness advances in the monogenic autoinflammatory. Rheum Dis Clin North Am. 2017;43(3):327–345.
  • Duncan CJA, Dinnigan E, Theobald R, et al. Early-onset autoimmune disease due to a heterozygous loss-of-function mutation in TNFAIP3 (A20). Ann Rheum Dis. 2018;77(5):783–786.
  • Shiraki M, Williams E, Yokoyama N, et al. Hematopoietic Cell transplantation ameliorates autoinflammation in A20 haploinsufficiency. J Clin Immunol. 2021;41(8):1954–1956.
  • Damgaard RB, Elliott PR, Swatek KN, et al. OTULIN deficiency in ORAS causes cell type‐specific LUBAC degradation, dysregulated TNF signalling and cell death. EMBO Mol Med. 2019;11(3):1–17.
  • Boisson B, Laplantine E, Prando C, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol. 2012;13(12):1178–1186.
  • Zhang J, Jin T, Aksentijevich I, et al. RIPK1-associated inborn errors of innate immunity. Front Immunol. 2021;12. DOI:https://doi.org/10.3389/fimmu.2021.676946.
  • Cuchet-Lourenço D, Eletto D, Wu C, et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science. 2018;361(6404):810–813.
  • Lalaoui N, Boyden SE, Oda H, et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature. 2020;577(7788):103–108.
  • Tao P, Sun J, Wu Z, et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature. 2020;577(7788):109–114.
  • Li Y, Führer M, Bahrami E, et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2019;116(3):970–975.
  • McNaughton P, Lum S, Zademi Z, et al. Outcomes of stem cell transplant for RIPK1 deficiency: single centre experience. Bone Marrow Transpl. 2020;55:447.
  • d’Angelo DM, Di Filippo P, Breda L, et al. Type I interferonopathies in children: an overview. Front Pediatr. 2021;9:1–16.
  • de Jesus AA, Hou Y, Brooks S, et al. Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases. J Clin Invest. 2020;130(4):1669–1682.
  • Crow YJ, Neven B, Frémond ML. JAK inhibition in the type I interferonopathies. J Allergy Clin Immunol. 2021;8–10. DOI:https://doi.org/10.1016/j.jaci.2021.07.028
  • Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128(7):3041–3052.
  • Kataoka S, Kawashima N, Okuno Y, et al. Successful treatment of a novel type I interferonopathy due to a de novo PSMB9 gene mutation with a Janus kinase inhibitor. J Allergy Clin Immunol. 2021;148(2):639–644.
  • Verhoeven D, Schonenberg-Meinema D, Ebstein F, et al. Hematopoietic stem cell transplantation in a patient with proteasome-associated auto-inflammatory syndrome (PRAAS). J Allergy Clin Immunol. 2022;149(3):1120–1127.
  • Martinez CA, Ebstein F, Nicholas SK, et al. HSCT corrects primary immunodeficiency and immune dysregulation in patients with POMP-related auto-inflammatory disease. Blood. 2021;138(19):1896–1901.
  • Meinhardt A, Ramos PC, Dohmen RJ, et al. Curative treatment of POMP-related autoinflammation and immune dysregulation (PRAID) by hematopoietic stem cell transplantation. J Clin Immunol. 2021;41(7):1664–1667.
  • Russell AJ, Gray PE, Ziegler JB, et al. SAMD9L autoinflammatory or ataxia pancytopenia disease mutations activate cell-autonomous translational repression. Proc Natl Acad Sci. 2021;118(34):e2110190118.
  • Allenspach EJ, Soveg F, Finn LS, et al. Germline SAMD9L truncation variants trigger global translational repression. J Exp Med. 2021;218(5):e20201195.
  • Papa R, Rusmini M, Volpi S, et al. Progression of non‐hematologic manifestations in SAMD9L‐associated autoinflammatory disease (SAAD) after hematopoietic stem cell transplantation. Pediatr Allergy Immunol. 2022;33(1):e13711.
  • Duncan CJA, Thompson BJ, Chen R, et al. Severe type I interferonopathy and unrestrained interferon signaling due to a homozygous germline mutation in STAT2. Sci Immunol. 2019;4(42):eaav7501.
  • Gruber C, Martin-Fernandez M, Ailal F, et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J Exp Med. 2020;217(5):1–11.
  • Duncan CJA, Hambleton S. Human disease phenotypes associated with loss and gain of function mutations in STAT2: viral susceptibility and type I interferonopathy. J Clin Immunol. 2021;41(7):1446–1456.
  • Magg T, Okano T, Koenig LM, et al. Heterozygous OAS1 gain-of-function variants cause an autoinflammatory immunodeficiency. Sci Immunol. 2021;6(60). DOI:https://doi.org/10.1126/sciimmunol.abf9564.
  • Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee. J Clin Immunol. 2020;40(1):24–64.
  • Elkan PN, Pierce SB, Segel R, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med. 2014;370(10):921–931.
  • Zhou Q, Yang D, Ombrello AK, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370(10):911–920.
  • Schepp J, Proietti M, Frede N, et al. Screening of 181 patients with antibody deficiency for deficiency of adenosine deaminase 2 sheds new light on the disease in adulthood. Arthritis Rheumatol. 2017;69(8):1689–1700.
  • Schepp J, Bulashevska A, Mannhardt-Laakmann W, et al. Deficiency of adenosine deaminase 2 causes antibody deficiency. J Clin Immunol. 2016;36(3):179–186.
  • Ben-Ami T, Revel-Vilk S, Brooks R, et al. Extending the clinical phenotype of adenosine deaminase 2 deficiency. J Pediatr. 2016;177:316–320.
  • Hashem H, Egler R, Dalal J. Refractory pure red cell aplasia manifesting as deficiency of adenosine deaminase 2. J Pediatr Hematol Oncol. 2017;39(5):e293–96.
  • Michniacki TF, Hannibal M, Ross CW, et al. Hematologic manifestations of deficiency of adenosine deaminase 2 (DADA2) and response to tumor necrosis factor inhibition in DADA2-associated bone marrow failure. J Clin Immunol. 2018;38(2):166–173.
  • Pinto B, Deo P, Sharma S, et al. Expanding spectrum of DADA2: a review of phenotypes, genetics, pathogenesis and treatment. Clin Rheumatol. 2021;40(10):3883–3896.
  • Lee PY, Kellner ES, Huang Y, et al. Genotype and functional correlates of disease phenotype in deficiency of adenosine deaminase 2 (DADA2). J Allergy Clin Immunol. 2020;145(6):1664–1672.
  • Trotta L, Martelius T, Siitonen T, et al. ADA2 deficiency: clonal lymphoproliferation in a subset of patients. J Allergy Clin Immunol. 2018;141(4):1534–37.e8.
  • Alsultan A, Basher E, Alqanatish J, et al. Deficiency of ADA2 mimicking autoimmune lymphoproliferative syndrome in the absence of livedo reticularis and vasculitis. Pediatr Blood Cancer. 2018;65(4):10–13.
  • Springer JM, Gierer SA, Jiang H, et al. Deficiency of adenosine deaminase 2 in adult siblings: many years of a misdiagnosed disease with severe consequences. Front Immunol. 2018;9:1–5.
  • Alabbas F, Elyamany G, Alsharif O, et al. Childhood Hodgkin Lymphoma: think DADA2. J Clin Immunol. 2019;39(1):26–29.
  • Sahin S, Adrovic A, Kasapcopur O. A monogenic autoinflammatory disease with fatal vasculitis: deficiency of adenosine deaminase 2. Curr Opin Rheumatol. 2020;32(1):3–14.
  • Meyts I, Aksentijevich I. Deficiency of adenosine deaminase 2 (DADA2): updates on the phenotype, genetics, pathogenesis, and treatment. J Clin Immunol. 2018;38(5):569–578.
  • Ombrello AK, Qin Jing, Bethesda PM, et al. Treatment strategies for deficiency of adenosine deaminase 2. N Engl J Med. 2019;380(16):1582–1584.
  • Cooray S, Omyinmi E, Hong Y, et al. Anti-tumour necrosis factor treatment for the prevention of ischaemic events in patients with deficiency of adenosine deaminase 2 (DADA2). Rheumatology. 2021;60(9):4373–4378.
  • Hashem H, Kumar AR, Müller I, et al. Hematopoietic stem cell transplantation rescues the hematological, immunological, and vascular phenotype in DADA2. Blood. 2017;130(24):2682–2688.
  • Hashem H, Bucciol G, Ozen S, et al. Hematopoietic cell transplantation cures adenosine deaminase 2 deficiency: report on 30 patients. J Clin Immunol. 2021;41(7):1633–1647.
  • Yamashita M, Morio T. Another exciting data—HCT successfully cured patients with DADA2: a commentary on “Hematopoietic cell transplantation cures adenosine deaminase 2 deficiency: report on 30 patients” by Hashem H et al. J Clin Immunol. 2021;41(7):1443–1445.
  • Liu L, Wang W, Wang Y, et al. A Chinese DADA2 patient: report of two novel mutations and successful HSCT. Immunogenetics. 2019;71(4):299–305.
  • Staples E, Simeoni I, Stephens JC, et al. ADA2 deficiency complicated by EBV-driven lymphoproliferative disease. Clin Immunol. 2020;215:22–25.
  • Gyurkocza B, Cao TM, Storb RF, et al. Salvage allogeneic hematopoietic cell transplan-tation with fludarabine and low-dose total body irradiation after rejection of first allografts. Biol Blood Marrow Transplant. 2009;15(10):1314–1322.
  • Ahmed N, Leung KS, Rosenblatt H, et al. Successful treatment of stem cell graft failure in pediatric patients using a submyeloablative regimen of campath-1H and fludarabine. Biol Blood Marrow Transplant. 2008;14(11):1298–1304.
  • Zoccolillo M, Brigida I, Barzaghi F, et al. Lentiviral correction of enzymatic activity restrains macrophage inflammation in adenosine deaminase 2 deficiency. Blood Adv. 2021;5(16):3174–3187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.