2,061
Views
2
CrossRef citations to date
0
Altmetric
Review

The future clinical implications of trained immunity

, , &
Pages 1125-1134 | Received 25 Mar 2022, Accepted 30 Aug 2022, Published online: 18 Sep 2022

References

  • Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;5 Pt 4(1):1–13. PMID: 2700931.
  • Matzinger P. The danger model: a renewed sense of self. Science. 2002 Apr 12;296(5566):301–305. PMID: 11951032.
  • Hayden MS, Ghosh S. NF-κB in immunobiology. Cell Res. 2011Feb;21(2):223–244. Epub 2011 Jan 18. PMID: 21243012; PMCID: PMC3193440.
  • Quintin J, Saeed S, Martens JHA, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012 Aug 16;12(2):223–232. PMID: 22901542; PMCID: PMC3864037.
  • Rizzetto L, Ifrim DC, Moretti S, et al. Fungal chitin induces trained immunity in human monocytes during cross-talk of the host with Saccharomyces cerevisiae. J Biol Chem. 2016 Apr 8;291(15):7961–7972. Epub 2016 Feb 17. PMID: 26887946; PMCID: PMC4825003.
  • Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011 May 19;9(5):355–361. PMID: 21575907.
  • Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17537–17542. Epub 2012 Sep 17. PMID: 22988082; PMCID: PMC3491454.
  • Arts RJW, Carvalho A, La Rocca C, et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 2016 Dec 6;17(10):2562–2571. PMID: 27926861; PMCID: PMC5177620.
  • Arts RJW, Moorlag SJCFM, Novakovic B, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018 Jan 10;23(1):89–100.e5. PMID: 29324233.
  • Chan GC, Chan WK, Sze DM. The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol. 2009 Jun 10;2(1):25. PMID: 19515245; PMCID: PMC2704234.
  • Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014 Sep 26;345(6204):1250684. Erratum in: Science. 2014 Nov 7;346:aaa1503. van der Meer, Brian M J W [corrected to van der Veer, Brian M J W]. PMID: 25258083; PMCID: PMC4226238
  • Fanucchi S, Fok ET, Dalla E, et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat Genet. 2019 Jan;51(1):138–150. Epub 2018 Dec 10. Erratum in: Nat Genet. 2019 Feb;51(2):364. PMID: 30531872.
  • Moorlag SJCFM, Rodriguez-Rosales YA, Gillard J, et al. BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Rep. 2020 Nov 17;33(7):108387. PMID: 33207187; PMCID: PMC7672522.
  • Keating ST, Groh L, van der Heijden CDCC, et al. The Set7 lysine methyltransferase regulates plasticity in oxidative phosphorylation necessary for trained immunity induced by β-glucan. Cell Rep. 2020 Apr 21;31(3):107548. PMID: 32320649; PMCID: PMC7184679.
  • Mourits VP, van Puffelen JH, Novakovic B, et al. Lysine methyltransferase G9a is an important modulator of trained immunity. Clin Transl Immunology. 2021 Feb 18;10(2):e1253. PMID: 33708384; PMCID: PMC7890679.
  • Fanucchi S, Domínguez-Andrés J, Joosten LAB, et al. The intersection of epigenetics and metabolism in trained immunity. Immunity. 2021 Jan 12;54(1):32–43. Epub 2020 Nov 20. PMID: 33220235.
  • Riksen NP, Netea MG. Immunometabolic control of trained immunity. Mol Aspects Med. 2021 Feb;77:100897. Epub 2020 Sep 2. PMID: 32891423; PMCID: PMC7466946.
  • Ferreira AV, Domiguéz-Andrés J, Netea MG. The role of cell metabolism in innate immune memory. J Innate Immun. 2022;14(1):42–50. Epub 2020 Dec 30. Erratum in: J Innate Immun. 2021;13(3):194. PMID: 33378755; PMCID: PMC8787524.
  • Moorlag SJCFM, Matzaraki V, van Puffelen JH, et al. An integrative genomics approach identifies KDM4 as a modulator of trained immunity. Eur J Immunol. 2022 Mar;52:431–446. Epub 2021 Dec 10. PMID: 34821391.
  • Cai L, Sutter BM, Li B, et al. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell. 2011 May 20;42(4):426–437. PMID: 21596309; PMCID: PMC3109073.
  • Anderson KA, Madsen AS, Olsen CA, et al. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochim Biophys Acta Bioenerg. 2017 Dec;1858:991–998. Epub 2017 Sep 22. PMID: 28947253; PMCID: PMC5648639.
  • Bekkering S, Blok BA, Joosten LA, et al. In vitro experimental model of trained innate immunity in human primary monocytes. Clin Vaccine Immunol. 2016 Dec 5;23(12):926–933. PMID: 27733422; PMCID: PMC5139603.
  • Ifrim DC, Quintin J, Joosten LA, et al. Trained immunity or tolerance: opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors. Clin Vaccine Immunol. 2014 Apr;21:534–545. Epub 2014 Feb 12. PMID: 24521784; PMCID: PMC3993125.
  • van der Heijden CDCC, Noz MP, Joosten LAB, et al. Epigenetics and Trained Immunity. Antioxid Redox Signal. 2018 Oct 10;29(11):1023–1040. Epub 2017 Nov 21. PMID: 28978221; PMCID: PMC6121175.
  • Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 2009 Oct;30(10):475–487. Epub 2009 Sep 24. PMID: 19781994.
  • Dillon S, Agrawal S, Banerjee K, et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest. 2006 Apr;116(4):916–928. PMID: 16543948; PMCID: PMC1401484.
  • Butcher SK, O’Carroll CE, Wells CA, et al. Toll-like receptors drive specific patterns of tolerance and training on restimulation of macrophages. Front Immunol. 2018 May 14;9:933. PMID: 29867935; PMCID: PMC5960718.
  • Bomans K, Schenz J, Sztwiertnia I, et al. Sepsis induces a long-lasting state of trained immunity in bone marrow monocytes. Front Immunol. 2018 Nov 19;9:2685. PMID: 30510555; PMCID: PMC6254543.
  • Ratter JM, Rooijackers HMM, Hooiveld GJ, et al. In vitro and in vivo effects of lactate on metabolism and cytokine production of human primary PBMCs and monocytes. Front Immunol. 2018 Nov 12;9:2564. PMID: 30483253; PMCID: PMC6240653.
  • Yang K, Xu J, Fan M, et al. Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling. Front Immunol. 2020 Oct 6;11:587913. PMID: 33123172; PMCID: PMC7573489.
  • Kleinnijenhuis J, Quintin J, Preijers F, et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun. 2014;6(2):152–158. Epub 2013 Oct 30. PMID: 24192057; PMCID: PMC3944069.
  • Nankabirwa V, Tumwine JK, Mugaba PM, et al. Child survival and BCG vaccination: a community based prospective cohort study in Uganda. BMC Public Health. 2015 Feb 22;15(1):175. PMID: 25886062; PMCID: PMC4342809.
  • Mitroulis I, Ruppova K, Wang B, et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell. 2018 Jan 11;172(1–2):147–161.e12. PMID: 29328910; PMCID: PMC5766828.
  • Cirovic B, de Bree LCJ, Groh L, et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe. 2020 Aug 12;28(2):322–334.e5. Epub 2020 Jun 15. PMID: 32544459; PMCID: PMC7295478.
  • Hamada A, Torre C, Drancourt M, et al. Trained immunity carried by non-immune cells. Front Microbiol. 2019 Jan 14;9:3225. PMID: 30692968; PMCID: PMC6340064.
  • Bigot J, Guillot L, Guitard J, et al. Respiratory epithelial cells can remember infection: a proof-of-concept study. J Infect Dis. 2020 Mar 2;221(6):1000–1005. PMID: 31678998.
  • Schnack L, Sohrabi Y, Lagache SMM, et al. Mechanisms of trained innate immunity in oxLDL primed human coronary smooth muscle cells. Front Immunol. 2019 Jan 23;10:13. PMID: 30728822; PMCID: PMC6351498.
  • Blok BA, Arts RJ, van Crevel R, et al. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J Leukoc Biol. 2015 Sep;98(3):347–356. Epub 2015 Jul 6. PMID: 26150551.
  • Gyssens IC, Netea MG. Heterologous effects of vaccination and trained immunity. Clin Microbiol Infect. 2019 Dec;25(12):1457–1458. Epub 2019 May 31. PMID: 31158520.
  • van ‘t Wout JW, Poell R, van Furth R. The role of BCG/PPD-activated macrophages in resistance against systemic candidiasis in mice. Scand J Immunol. 1992 Nov;36(5):713–719. PMID: 1439583.
  • Sher NA, Chaparas SD, Greenberg LE, et al. Effects of BCG, Corynebacterium parvum, and methanol-extraction residue in the reduction of mortality from Staphylococcus aureus and Candida albicans infections in immunosuppressed mice. Infect Immun. 1975 Dec;12(6):1325–1330. PMID: 1107224; PMCID: PMC415439.
  • Berendsen ML, van Gijzel SW, Smits J, et al. BCG vaccination is associated with reduced malaria prevalence in children under the age of 5 years in sub-Saharan Africa. BMJ Glob Health. 2019 Nov 14;4(6):e001862. PMID: 31798997; PMCID: PMC6861070.
  • Hippmann G, Wekkeli M, Rosenkranz AR, et al. Unspezifische immunstimulation mit BCG bei herpes simplex recidivans. nachbeobachtung 5 bis 10 Jahre nach BCG-Vakzination [Nonspecific immune stimulation with BCG in Herpes simplex recidivans. Follow-up 5 to 10 years after BCG vaccination]. Wien Klin Wochenschr. 1992;104(7):200–204. German. PMID: 1523844.
  • Salem A, Nofal A, Hosny D. Treatment of common and plane warts in children with topical viable Bacillus Calmette-Guerin. Pediatr Dermatol. 2013 Jan-Feb;30(1):60–63. Epub 2012 Sep 7. PMID: 22958215.
  • Wardhana, Datau EA, Sultana A, et al. The efficacy of Bacillus Calmette-Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly. Acta Med Indones. 2011 Jul;43(3):185–190. PMID: 21979284.
  • Stensballe LG, Nante E, Jensen IP, et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case-control study. Vaccine. 2005 Jan 26;23(10):1251–1257. PMID: 15652667.
  • Ristori G, Faustman D, Matarese G, et al. Bridging the gap between vaccination with Bacille Calmette-Guérin (BCG) and immunological tolerance: the cases of type 1 diabetes and multiple sclerosis. Curr Opin Immunol. 2018 Dec;55:89–96. Epub 2018 Nov 15. PMID: 30447407
  • Martín C, Marinova D, Aguiló N, et al. MTBVAC, a live TB vaccine poised to initiate efficacy trials 100 years after BCG. Vaccine. 2021 Dec 8;39(50):7277–7285. Epub 2021 Jul 6. PMID: 34238608.
  • Tarancón R, Domínguez-Andrés J, Uranga S, et al. New live attenuated tuberculosis vaccine MTBVAC induces trained immunity and confers protection against experimental lethal pneumonia. PLoS Pathog. 2020 Apr 2;16:e1008404. PMID: 32240273; PMCID: PMC7117655.
  • Abarca K, Rey-Jurado E, Muñoz-Durango N, et al. Safety and immunogenicity evaluation of recombinant BCG vaccine against respiratory syncytial virus in a randomized, double-blind, placebo-controlled phase I clinical trial. EClinicalMedicine. 2020 Oct 6;27:100517. PMID: 33073219; PMCID: PMC7548429.
  • Soto JA, Gálvez NMS, Pacheco GA, et al. Induction of protective immunity by a single low dose of a master cell bank cGMP-rBCG-P vaccine against the human metapneumovirus in mice. Front Cell Infect Microbiol. 2021 Jun 29;11:662714. PMID: 34268134; PMCID: PMC8276701.
  • Broset E, Saubi N, Guitart N, et al. MTBVAC-Based TB-HIV vaccine is safe, elicits HIV-T cell responses, and protects against mycobacterium tuberculosis in mice. Mol Ther Methods Clin Dev. 2019 Feb 7;13:253–264. PMID: 30859110; PMCID: PMC6395831.
  • O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19? Nat Rev Immunol. 2020 Jun;20(6):335–337. PMID: 32393823; PMCID: PMC7212510.
  • Hensel J, McAndrews KM, McGrail DJ, et al. Protection against SARS-CoV-2 by BCG vaccination is not supported by epidemiological analyses. Sci Rep. 2020 Oct 27;10(1):18377. PMID: 33110184; PMCID: PMC7591473.
  • Debisarun PA, Gössling KL, Bulut O, et al. Induction of trained immunity by influenza vaccination - impact on COVID-19. PLoS Pathog. 2021 Oct 25;17(10):e1009928. PMID: 34695164; PMCID: PMC8568262.
  • Shao Y, Saredy J, Xu K, et al. Endothelial Immunity trained by coronavirus infections, DAMP stimulations and regulated by anti-oxidant NRF2 may contribute to inflammations, myelopoiesis, COVID-19 cytokine storms and thromboembolism. Front Immunol. 2021 Jun 25;12:653110. PMID: 34248940; PMCID: PMC8269631.
  • Del Fresno C, García-Arriaza J, Martínez-Cano S, et al. The bacterial mucosal immunotherapy MV130 protects against SARS-CoV-2 infection and improves COVID-19 vaccines immunogenicity. Front Immunol. 2021 Nov 18;12:748103. PMID: 34867974; PMCID: PMC8637175.
  • Brandi P, Conejero L, Cueto FJ, et al. Trained immunity induction by the inactivated mucosal vaccine MV130 protects against experimental viral respiratory infections. Cell Rep. 2022 Jan 4;38(1):110184. PMID: 34986349; PMCID: PMC8755442.
  • Salzmann M, Haider P, Kaun C, et al. Innate immune training with bacterial extracts enhances lung macrophage recruitment to protect from betacoronavirus infection. J Innate Immun. 2021 Nov;12:1–13. Epub ahead of print. PMID: 34775384
  • Suárez N, Ferrara F, Rial A, et al. Bacterial lysates as immunotherapies for respiratory infections: methods of preparation. Front Bioeng Biotechnol. 2020 Jun 5;8:545. PMID: 32582669; PMCID: PMC7289947.
  • Domínguez-Andrés J, van Crevel R, Divangahi M, et al. Designing the next generation of vaccines: relevance for future pandemics. mBio. 2020 Dec 22;11(6):e02616–20. PMID: 33443120; PMCID: PMC8534290.
  • Sánchez-Ramón S, Conejero L, Netea MG, et al. Trained immunity-based vaccines: a new paradigm for the development of broad-spectrum anti-infectious formulations. Front Immunol. 2018 Dec 17;9:2936. PMID: 30619296; PMCID: PMC6304371.
  • Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol. 1976 Aug;116(2):180–183. PMID: 820877.
  • Lu JL, Xia QD, Lu YH, et al. Efficacy of intravesical therapies on the prevention of recurrence and progression of non-muscle-invasive bladder cancer: a systematic review and network meta-analysis. Cancer Med. 2020 Nov;9(9):7800–7809. Epub 2020 Oct 11 Erratum in: Cancer Med. 2021 Aug;10(16):5722. PMID: 33040478; PMCID: PMC7643689
  • Anastasiadis A, de Reijke TM. Best practice in the treatment of nonmuscle invasive bladder cancer. Ther Adv Urol. 2012Feb;4(1):13–32. PMID: 22295042; PMCID: PMC3263923.
  • Ratliff TL, Kavoussi LR, Catalona WJ. Role of fibronectin in intravesical BCG therapy for superficial bladder cancer. J Urol. 1988 Feb;139(2):410–414. PMID: 3276931.
  • de Queiroz NMGP, Marinho FV, de Araujo ACVSC, et al. MyD88-dependent BCG immunotherapy reduces tumor and regulates tumor microenvironment in bladder cancer murine model. Sci Rep. 2021 Aug 2;11(1):15648. PMID: 34341449; PMCID: PMC8329301.
  • Han J, Gu X, Li Y, et al. Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed Pharmacother. 2020Sep;129:110393. Epub 2020 Jun 16. PMID: 32559616.
  • Conti P, Reale M, Nicolai M, et al. Bacillus Calmette-Guérin potentiates monocyte responses to lipopolysaccharide-induced tumor necrosis factor and interleukin-1, but not interleukin-6 in bladder cancer patients. Cancer Immunol Immunother. 1994 Jun;38(6):365–371. PMID: 8205557.
  • De Boer EC, De Jong WH, Steerenberg PA, et al. Induction of urinary interleukin-1 (IL-1), IL-2, IL-6, and tumour necrosis factor during intravesical immunotherapy with Bacillus Calmette-Guérin in superficial bladder cancer. Cancer Immunol Immunother. 1992;34(5):306–312. PMID: 1540977.
  • van Puffelen JH, Keating ST, Oosterwijk E, et al. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat Rev Urol. 2020 Sep;17(9):513–525. Epub 2020 Jul 16. PMID: 32678343.
  • Buffen K, Oosting M, Quintin J, et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog. 2014 Oct 30;10(10):e1004485. PMID: 25356988; PMCID: PMC4214925.
  • Usher NT, Chang S, Howard RS, et al. Association of BCG vaccination in childhood with subsequent cancer diagnoses: a 60-year follow-up of a clinical trial. JAMA Network Open. 2019 Sep 4;2(9):e1912014. PMID: 31553471; PMCID: PMC6763973.
  • Morra ME, Kien ND, Elmaraezy A, et al. Early vaccination protects against childhood leukemia: a systematic review and meta-analysis. Sci Rep. 2017 Nov 22;7(1):15986. PMID: 29167460; PMCID: PMC5700199.
  • Villumsen M, Sørup S, Jess T, et al. Risk of lymphoma and leukaemia after Bacille Calmette-Guérin and smallpox vaccination: a Danish case-cohort study. Vaccine. 2009 Nov 16;27(49):6950–6958. Epub 2009 Sep 9. PMID: 19747577.
  • Kremenovic M, Schenk M, Lee DJ. Clinical and molecular insights into BCG immunotherapy for melanoma. J Intern Med. 2020 Dec;288(6):625–640. Epub 2020 Mar 4. PMID: 32128919.
  • Nakamura T, Fukiage M, Higuchi M, et al. Nanoparticulation of BCG-CWS for application to bladder cancer therapy. J Control Release. 2014 Feb 28;176:44–53. Epub 2013 Dec 31. PMID: 24389133.
  • Masuda H, Nakamura T, Noma Y, et al. Application of BCG-CWS as a systemic adjuvant by using nanoparticulation technology. Mol Pharm. 2018 Dec 3;15(12):5762–5771. Epub 2018 Nov 8. PMID: 30380885.
  • Priem B, van Leent MMT, Teunissen AJP, et al. Trained immunity-promoting nanobiologic therapy suppresses tumor growth and potentiates checkpoint inhibition. Cell. 2020 Oct 29;183(3):786–801.e19. PMID: 33125893; PMCID: PMC8074872.
  • Lamb DJ, Eales LJ, Ferns GA. Immunization with Bacillus Calmette-Guerin vaccine increases aortic atherosclerosis in the cholesterol-fed rabbit. Atherosclerosis. 1999 Mar;143(1):105–113. PMID: 10208485.
  • Sohrabi Y, Lagache SMM, Schnack L, et al. mTOR-dependent oxidative stress regulates oxLDL-induced trained innate immunity in human monocytes. Front Immunol. 2019 Jan 22;9:3155. PMID: 30723479; PMCID: PMC6350618.
  • Bekkering S, van den Munckhof I, Nielen T, et al. Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis. 2016 Nov;254:228–236. Epub 2016 Oct 12. PMID: 27764724
  • Christ A, Günther P, Lauterbach MAR, et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell. 2018 Jan 11;172(1–2):162–175.e14. PMID: 29328911; PMCID: PMC6324559.
  • van Kampen E, Jaminon A, van Berkel TJ, et al. Diet-induced (epigenetic) changes in bone marrow augment atherosclerosis. J Leukoc Biol. 2014 Nov;96(5):833–841. Epub 2014 Jul 14. PMID: 25024399.
  • Seijkens T, Hoeksema MA, Beckers L, et al. Hypercholesterolemia-induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis. FASEB J. 2014 May;28(5):2202–2213. Epub 2014 Jan 30. PMID: 24481967.
  • Swirski FK, Libby P, Aikawa E, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest. 2007 Jan;117(1):195–205. PMID: 17200719; PMCID: PMC1716211.
  • Edgar L, Akbar N, Braithwaite AT, et al. Hyperglycemia induces trained immunity in macrophages and their precursors and promotes atherosclerosis. Circulation. 2021 Sep 21;144(12):961–982. Epub 2021 Jul 13. PMID: 34255973; PMCID: PMC8448412.
  • Arts RJW, Joosten LAB, Netea MG. The potential role of trained immunity in autoimmune and autoinflammatory disorders. Front Immunol. 2018 Feb 20;9:298. PMID: 29515591; PMCID: PMC5826224.
  • Dai X, Dai X, Gong Z, et al. Disease-Specific autoantibodies induce trained immunity in RA synovial tissues and its gene signature correlates with the response to clinical therapy. Mediators Inflamm. 2020 Oct 6;2020:2109325. PMID: 33082707; PMCID: PMC7558774.
  • McGarry T, Hanlon MM, Marzaioli V, et al. Rheumatoid arthritis CD14+ monocytes display metabolic and inflammatory dysfunction, a phenotype that precedes clinical manifestation of disease. Clin Transl Immunology. 2021 Jan 19;10(1):e1237. PMID: 33510894; PMCID: PMC7815439.
  • Lioté F, Boval-Boizard B, Weill D, et al. Blood monocyte activation in rheumatoid arthritis: increased monocyte adhesiveness, integrin expression, and cytokine release. Clin Exp Immunol. 1996 Oct;106(1):13–19. PMID: 8870692; PMCID: PMC2200557.
  • Messemaker TC, Mikkers HMM, Huizinga TW, et al. Inflammatory genes TNFα and IL6 display no signs of increased H3K4me3 in circulating monocytes from untreated rheumatoid arthritis patients. Genes Immun. 2017 Sep;18(3):191–196. Epub 2017 Aug 10. PMID: 28794503.
  • Yao H, Niu H, Yan N, et al. FRI0063 Rapamycin induces remission in patients with refractory rheumatoid arthritis. Ann Rheum Dis. 2018;77:578.
  • Shao P, Ma L, Ren Y, et al. Modulation of the immune response in rheumatoid arthritis with strategically released rapamycin. Mol Med Rep. 2017 Oct;16(4):5257–5262. Epub 2017 Aug 18. PMID: 28849205; PMCID: PMC5647081.
  • Herrada AA, Escobedo N, Iruretagoyena M, et al. Innate immune cells’ contribution to systemic lupus erythematosus. Front Immunol. 2019 Apr 15;10:772. PMID: 31037070; PMCID: PMC6476281.
  • He J, Ma J, Ren B, et al. Advances in systemic lupus erythematosus pathogenesis via mTOR signaling pathway. Semin Arthritis Rheum. 2020 Apr;50:314–320. Epub 2019 Nov 11. PMID: 31796213.
  • Zhang Z, Shi L, Dawany N, et al. H3K4 tri-methylation breadth at transcription start sites impacts the transcriptome of systemic lupus erythematosus. Clin Epigenetics. 2016 Feb 2;8(1):14. PMID: 26839600; PMCID: PMC4736279.
  • Zhang Z, Song L, Maurer K, et al. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun. 2010 Mar;11(2):124–133. Epub 2009 Aug 27. PMID: 19710693; PMCID: PMC2832080.
  • Grigoriou M, Banos A, Filia A, et al. Transcriptome reprogramming and myeloid skewing in haematopoietic stem and progenitor cells in systemic lupus erythematosus. Ann Rheum Dis. 2020 Feb;79(2):242–253. Epub 2019 Nov 28. PMID: 31780527; PMCID: PMC7025734
  • Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003 Oct 2;425(6957):516–521. Epub 2003 Sep 7. PMID: 14520412.
  • Hu DE, Moore AM, Thomsen LL, et al. Uric acid promotes tumor immune rejection. Cancer Res. 2004 Aug 1;64(15):5059–5062. PMID: 15289304.
  • Taus F, Santucci MB, Greco E, et al. Monosodium urate crystals promote innate anti-mycobacterial immunity and improve BCG efficacy as a vaccine against tuberculosis. PLoS One. 2015 May 29;10(5):e0127279. PMID: 26023779; PMCID: PMC4449037.
  • Kono H, Chen CJ, Ontiveros F, et al. Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest. 2010 Jun;120:1939–1949. Epub 2010 May 24. PMID: 20501947; PMCID: PMC2877935
  • Crișan TO, Cleophas MC, Oosting M, et al. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann Rheum Dis. 2016 Apr;75(4):755–762. Epub 2015 Feb 3. PMID: 25649144.
  • Crişan TO, Cleophas MCP, Novakovic B, et al. Uric acid priming in human monocytes is driven by the AKT-PRAS40 autophagy pathway. Proc Natl Acad Sci U S A. 2017 May 23;114(21):5485–5490. Epub 2017 May 8. PMID: 28484006; PMCID: PMC5448210.
  • Ma Q, Honarpisheh M, Li C, et al. Soluble uric acid is an intrinsic negative regulator of monocyte activation in monosodium urate crystal-induced tissue inflammation. J Immunol. 2020 Aug 1;205:789–800. Epub 2020 Jun 19. PMID: 32561569.
  • Liu W, Xiao X, Demirci G, et al. Innate NK cells and macrophages recognize and reject allogeneic nonself in vivo via different mechanisms. J Immunol. 2012 Mar 15;188:2703–2711. Epub 2012 Feb 10. PMID: 22327074; PMCID: PMC3298083.
  • van Leent MMT, Meerwaldt AE, Berchouchi A, et al. A modular approach toward producing nanotherapeutics targeting the innate immune system. Sci Adv. 2021 Mar 5;7(10):eabe7853. PMID: 33674313; PMCID: PMC7935355.
  • Braza MS, van Leent MMT, Lameijer M, et al. Inhibiting Inflammation with myeloid cell-specific nanobiologics promotes organ transplant acceptance. Immunity. 2018 Nov 20;49(5):819–828.e6. Epub 2018 Nov 6. PMID: 30413362; PMCID: PMC6251711.
  • Akpa CA, Kleo K, Lenze D, et al. DZNep-mediated apoptosis in B-cell lymphoma is independent of the lymphoma type, EZH2 mutation status and MYC, BCL2 or BCL6 translocations. PLoS One. 2019 Aug16;14(8):e0220681. PMID: 31419226; PMCID: PMC6697340.
  • Girard N, Bazille C, Lhuissier E, et al. 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells. PLoS One. 2014 May 22;9(5):e98176. PMID: 24852755; PMCID: PMC4031152.
  • Cruz FF, Rocco PR, Pelosi P. Anti-inflammatory properties of anesthetic agents. Crit Care. 2017 Mar 21;21(1):67. PMID: 28320449; PMCID: PMC5359894.
  • Arain MR, Buggy DJ. Anaesthesia for cancer patients. Curr Opin Anaesthesiol. 2007 Jun;20(3):247–253. PMID: 17479030.
  • Bulut O, Kilic G, Domínguez-Andrés J, et al. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol. 2020 Nov 23;32(12):741–753. PMID: 32766848; PMCID: PMC7680842.
  • Bakker OB, Aguirre-Gamboa R, Sanna S, et al. Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses. Nat Immunol. 2018 Jul;19(7):776–786. Epub 2018 May 21. PMID: 29784908; PMCID: PMC6022810.