1,049
Views
0
CrossRef citations to date
0
Altmetric
Review

The functional role and the clinical application of periostin in chronic rhinosinusitis

, &
Pages 857-866 | Received 03 Jan 2023, Accepted 15 Mar 2023, Published online: 30 Mar 2023

References

  • Bachert C, Marple B, Schlosser RJ, et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020;6:86.
  • Hopkins C, Solomon CG. Chronic rhinosinusitis with nasal polyps. N Engl J Med. 2019;381:55–63.
  • Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(Suppl S29):1–464. DOI:10.4193/Rhin20.401.
  • Benjamin MR, Stevens WW, Li N, et al. Clinical characteristics of patients with chronic rhinosinusitis without nasal polyps in an academic setting. J Allergy Clin Immunol Pract. 2019;7:1010–1016.
  • Litvack JR, Fong K, Mace J, et al. Predictors of olfactory dysfunction in patients with chronic rhinosinusitis. Laryngoscope. 2008;118:2225–2230.
  • Bachert C, Zhang N, Holtappels G, et al. Presence of IL-5 protein and IgE antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. J Allergy Clin Immunol. 2010;126:962–968.
  • Alobid I, Cardelus S, Benitez P, et al. Persistent asthma has an accumulative impact on the loss of smell in patients with nasal polyposis. Rhinology. 2011;49:519–524.
  • Van Zele T, Holtappels G, Gevaert P, et al. Differences in initial immunoprofiles between recurrent and nonrecurrent chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy. 2014;28:192–198.
  • Vlaminck S, Vauterin T, Hellings PW, et al. The importance of local eosinophilia in the surgical outcome of chronic rhinosinusitis: a 3-year prospective observational study. Am J Rhinol Allergy. 2014;28:260–264.
  • Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137:1449–1456.
  • Tan BK, Klingler AI, Poposki JA, et al. Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. J Allergy Clin Immunol. 2017;139:699–703.
  • Stevens WW, Peters AT, Tan BK, et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2019;7:2812–2820.
  • Wang X, Zhang N, Bo M, et al. Diversity of TH cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138:1344–1353.
  • Wang X, Sima Y, Zhao Y, et al. Endotypes of chronic rhinosinusitis based on inflammatory and remodeling factors. J Allergy Clin Immunol. 2023;151:458–468.
  • Xu X, Reitsma S, Wang Y, et al. Highlights in the advances of chronic rhinosinusitis. Allergy. 2021;76:3349–3358.
  • Mullol J, Azar A, Buchheit KM, et al. Chronic rhinosinusitis with nasal polyps: quality of life in the biologics era. J Allergy Clin Immunol Pract. 2022;10:1434–1453.
  • Brzost J, Czerwaty K, Dzaman K, et al. Perspectives in therapy of chronic rhinosinusitis. Diagnostics (Basel). 2022;12:2301.
  • Haruna S, Nakanishi M, Otori N, et al. Histopathological features of nasal polyps with asthma association: an immunohistochemical study. Am J Rhinol. 2004;18:165–172.
  • Fujieda S, Imoto Y, Kato Y, et al. Eosinophilic chronic rhinosinusitis. Allergol Int. 2019;68:403–412.
  • Tokunaga T, Sakashita M, Haruna T, et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy. 2015;70:995–1003.
  • Lou H, Wang C, Zhang L. Endotype-driven precision medicine in chronic rhinosinusitis. Expert Rev Clin Immunol. 2019;15:1171–1183.
  • Guo CL, Wang CS, Liu Z. Clinical and biological markers in disease and biologics to treat chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2022;22:16–23.
  • Izuhara K, Arima K, Ohta S, et al. Periostin in allergic inflammation. Allergol Int. 2014;63:143–151.
  • Izuhara K, Nunomura S, Nanri Y, et al. Periostin: an emerging biomarker for allergic diseases. Allergy. 2019;74:2116–2128. .
  • Yuyama N, Davies DE, Akaiwa M, et al. Analysis of novel disease-related genes in bronchial asthma. Cytokine. 2002;19:287–296.
  • Takayama G, Arima K, Kanaji T, et al. Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol. 2006;118:98–104.
  • Mitamura Y, Nunomura S, Nanri Y, et al. Hierarchical control of interleukin 13 (IL-13) signals in lung fibroblasts by STAT6 and SOX11. J Biol Chem. 2018;293:14646–14658.
  • Woodruff PG, Modrek B, Choy DF, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180:388–395.
  • Masuoka M, Shiraishi H, Ohta S, et al. Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest. 2012;122:2590–2600. .
  • Blanchard C, Mingler MK, McBride M, et al. Periostin facilitates eosinophil tissue infiltration in allergic lung and esophageal responses. Mucosal Immunol. 2008;1:289–296.
  • Fujishima H, Okada N, Matsumoto K, et al. The usefulness of measuring tear periostin for the diagnosis and management of ocular allergic diseases. J Allergy Clin Immunol. 2016;138:459–467.
  • Nishizawa H, Matsubara A, Nakagawa T, et al. The role of periostin in eosinophilic otitis media. Acta Otolaryngol. 2012;132:838–844.
  • Okamoto M, Hoshino T, Kitasato Y, et al. Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias. Eur Respir J. 2011;37:1119–1127.
  • Uchida M, Shiraishi H, Ohta S, et al. Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;46:677–686.
  • Yang L, Serada S, Fujimoto M, et al. Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma. PLoS ONE. 2012;7:e41994.
  • Yamaguchi Y, Ono J, Masuoka M, et al. Serum periostin levels are correlated with progressive skin sclerosis in patients with systemic sclerosis. Br J Dermatol. 2013;168:717–725.
  • Stankovic KM, Goldsztein H, Reh DD, et al. Gene expression profiling of nasal polyps associated with chronic sinusitis and aspirin-sensitive asthma. Laryngoscope. 2008;118:881–889.
  • Ishida A, Ohta N, Suzuki Y, et al. Expression of pendrin and periostin in allergic rhinitis and chronic rhinosinusitis. Allergol Int. 2012;61:589–595.
  • Daines SM, Wang Y, Orlandi RR. Periostin and osteopontin are overexpressed in chronically inflamed sinuses. Int Forum Allergy Rhinol. 2011;1:101–105.
  • Zhang W, Hubin G, Endam LM, et al. Expression of the extracellular matrix gene periostin is increased in chronic rhinosinusitis and decreases following successful endoscopic sinus surgery. Int Forum Allergy Rhinol. 2012;2:471–476.
  • Milonski J, Zielinska-Blizniewska H, Przybylowska K, et al. Significance of CYCLOOXYGENASE-2(COX-2), PERIOSTIN (POSTN) and INTERLEUKIN-4(IL-4) gene expression in the pathogenesis of chronic rhinosinusitis with nasal polyps. Eur Arch Otorhinolaryngol. 2015;272:3715–3720.
  • Shiono O, Sakuma Y, Komatsu M, et al. Differential expression of periostin in the nasal polyp may represent distinct histological features of chronic rhinosinusitis. Auris Nasus Larynx. 2015;42:123–127.
  • Ohta N, Ishida A, Kurakami K, et al. Expressions and roles of periostin in otolaryngological diseases. Allergol Int. 2014;63:171–180.
  • Kim MA, Izuhara K, Ohta S, et al. Association of serum periostin with aspirin-exacerbated respiratory disease. Ann Allergy Asthma Immunol. 2014;113:314–320.
  • Danielides G, Lygeros S, Kanakis M, et al. Periostin as a biomarker in chronic rhinosinusitis: a contemporary systematic review. Int Forum Allergy Rhinol. 2022;12:1535–1550.
  • Ebenezer JA, Christensen JM, Oliver BG, et al. Periostin as a marker of mucosal remodelling in chronic rhinosinusitis. Rhinology. 2017;55:234–241.
  • Xu M, Chen D, Zhou H, et al. The role of periostin in the occurrence and progression of eosinophilic chronic sinusitis with nasal polyps. Sci Rep. 2017;7(1):9479. DOI:10.1038/s41598-017-08375-2
  • Wei Y, Ma R, Zhang J, et al. Excessive periostin expression and Th2 response in patients with nasal polyps: association with asthma. J Thorac Dis. 2018;10:6585–6597.
  • Yang HW, Park JH, Shin JM, et al. Glucocorticoids ameliorate periostin-induced tissue remodeling in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2018. DOI:10.1111/cea.13267
  • Yilmaz GO, Cetinkaya EA, Eyigor H, et al. The diagnostic importance of periostin as a biomarker in chronic rhinosinusitis with nasal polyp. Eur Arch Otorhinolaryngol. 2022;279:5707–5714.
  • Zhang Z, Liu J, Xie L, et al. Tissue eosinophils and mucous inflammatory cytokines for the evaluation of olfactory recovery after endoscopic sinus surgery in patients with nasal polyposis. Am J Otolaryngol. 2022;43:103561.
  • Ninomiya T, Noguchi E, Haruna T, et al. Periostin as a novel biomarker for postoperative recurrence of chronic rhinosinitis with nasal polyps. Sci Rep. 2018;8:11450.
  • Kim DK, Kang SI, Kong IG, et al. Two-track medical treatment strategy according to the clinical scoring system for chronic rhinosinusitis. Allergy Asthma Immunol Res. 2018;10:490–502.
  • Izuhara K, Nunomura S, Nanri Y, et al. Periostin in inflammation and allergy. Cell Mol Life Sci. 2017;74:4293–4303.
  • Cui D, Huang Z, Liu Y, et al. The multifaceted role of periostin in priming the tumor microenvironments for tumor progression. Cell Mol Life Sci. 2017;74:4287–4291.
  • Jonstam K, Westman M, Holtappels G, et al. Serum periostin, IgE, and SE-IgE can be used as biomarkers to identify moderate to severe chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2017;140:1705–1708.
  • Asano T, Kanemitsu Y, Takemura M, et al. Serum periostin as a biomarker for comorbid chronic rhinosinusitis in patients with asthma. Ann Am Thorac Soc. 2017;14:667–675.
  • Xu M, Zhang W, Chen D, et al. Diagnostic significance of serum periostin in eosinophilic chronic sinusitis with nasal polyps. Acta Otolaryngol. 2018;138:387–391.
  • Maxfield AZ, Landegger LD, Brook CD, et al. Periostin as a biomarker for nasal polyps in chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2018;158:181–186.
  • Sato T, Ikeda H, Murakami K, et al. Periostin is an aggravating factor and predictive biomarker of eosinophilic chronic rhinosinusitis. Allergol Int. 2023;72:161–168.
  • Kimura H, Konno S, Nakamaru Y, et al. Sinus computed tomographic findings in adult smokers and nonsmokers with asthma. Analysis of clinical indices and biomarkers. Ann Am Thorac Soc. 2017;14:332–341.
  • De Schryver E, Derycke L, Calus L, et al. The effect of systemic treatments on periostin expression reflects their interference with the eosinophilic inflammation in chronic rhinosinusitis with nasal polyps. Rhinology. 2017;55:152–160.
  • Hamilton JD, Harel S, Swanson BN, et al. Dupilumab suppresses type 2 inflammatory biomarkers across multiple atopic, allergic diseases. Clin Exp Allergy. 2021;51:915–931.
  • Mullol J, Laidlaw TM, Bachert C, et al. Efficacy and safety of dupilumab in patients with uncontrolled severe chronic rhinosinusitis with nasal polyps and a clinical diagnosis of NSAID-ERD: results from two randomized placebo-controlled phase 3 trials. Allergy. 2022;77:1231–1244.
  • Oka A, Ninomiya T, Fujiwara T, et al. Serum IgG4 as a biomarker reflecting pathophysiology and post-operative recurrence in chronic rhinosinusitis. Allergol Int. 2020;69:417–423.
  • Tajiri T, Matsumoto H, Hiraumi H, et al. Efficacy of omalizumab in eosinophilic chronic rhinosinusitis patients with asthma. Ann Allergy Asthma Immunol. 2013;110:387–388.
  • Matsumoto H. Roles of periostin in asthma. Adv Exp Med Biol. 2019;1132:145–159.
  • Yu H, Kim DK. Neutrophils play an important role in the recurrence of chronic rhinosinusitis with nasal polyps. Biomedicines. 2022;10:2911.
  • Kanemitsu Y, Matsumoto H, Izuhara K, et al. Increased periostin associates with greater airflow limitation in patients receiving inhaled corticosteroids. J Allergy Clin Immunol. 2013;132:305–312.
  • Matsusaka M, Kabata H, Fukunaga K, et al. Phenotype of asthma related with high serum periostin levels. Allergol Int. 2015;64:175–180.
  • Hinks TS, Brown T, Lau LC, et al. Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity in matrix metalloproteinases and chitinase 3-like protein 1. J Allergy Clin Immunol. 2016;138:61–75.
  • Kanemitsu Y, Kurokawa R, Ono J, et al. Increased serum periostin levels and eosinophils in nasal polyps are associated with the preventive effect of endoscopic sinus surgery for asthma exacerbations in chronic rhinosinusitis patients. Int Arch Allergy Immunol. 2020;181:862–870.
  • Mueller SK, Wendler O, Nocera A, et al. Escalation in mucus cystatin 2, pappalysin-A, and periostin levels over time predict need for recurrent surgery in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2019;9:1212–1219.
  • Kanemitsu Y, Suzuki M, Fukumitsu K, et al. A novel pathophysiologic link between upper and lower airways in patients with chronic rhinosinusitis: association of sputum periostin levels with upper airway inflammation and olfactory function. World Allergy Organ J. 2020;13:100094.
  • Wardzynska A, Makowska JS, Pawelczyk M, et al. Periostin in exhaled breath condensate and in serum of asthmatic patients: relationship to upper and lower airway disease. Allergy Asthma Immunol Res. 2017;9:126–132.
  • Du K, Wang M, Zhang N, et al. Involvement of the extracellular matrix proteins periostin and tenascin C in nasal polyp remodeling by regulating the expression of MMPs. Clin Transl Allergy. 2021;11:e12059.
  • Yoshihara T, Nanri Y, Nunomura S, et al. Periostin plays a critical role in the cell cycle in lung fibroblasts. Respir Res. 2020;21:38.
  • Shiraishi H, Masuoka M, Ohta S, et al. Periostin contributes to the pathogenesis of atopic dermatitis by inducing TSLP production from keratinocytes. Allergol Int. 2012;61:563–572.
  • Nunomura S, Uta D, Kitajima I, et al. Periostin activates distinct modules of inflammation and itching downstream of the type 2 inflammation pathway. Cell Rep. 2023;42:111933.
  • Noguchi T, Nakagome K, Kobayashi T, et al. Periostin upregulates the effector functions of eosinophils. J Allergy Clin Immunol. 2016;138:1449–1452.
  • Johansson MW, Khanna M, Bortnov V, et al. IL-5-stimulated eosinophils adherent to periostin undergo stereotypic morphological changes and ADAM8-dependent migration. Clin Exp Allergy. 2017;47:1263–1274.
  • Nunomura S, Ejiri N, Kitajima M, et al. Establishment of a mouse model of atopic dermatitis by deleting Ikk2 in dermal fibroblasts. J Invest Dermatol. 2019;139:1274–1283.
  • Mishra SK, Wheeler JJ, Pitake S, et al. Periostin activation of integrin receptors on sensory neurons induces allergic itch. Cell Rep. 2020;31:107472.
  • Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019;394:1638–1650.
  • Ono J, Takai M, Kamei A, et al. A novel assay for improved detection of sputum periostin in patients with asthma. PLoS ONE. 2023;18:e0281356.
  • Mikheev AM, Mikheeva SA, Trister AD, et al. Periostin is a novel therapeutic target that predicts and regulates glioma malignancy. Neuro Oncol. 2015;17:372–382.
  • Wu Z, Dai W, Wang P, et al. Periostin promotes migration, proliferation, and differentiation of human periodontal ligament mesenchymal stem cells. Connect Tissue Res. 2018;59:108–119.
  • Chen G, Wang Y, Zhao X, et al. A positive feedback loop between periostin and TGFbeta1 induces and maintains the stemness of hepatocellular carcinoma cells via AP-2a activation. J Exp Clin Cancer Res. 2021;40:218.
  • Liu Y, Luan Y, Guo Z, et al. Periostin attenuates oxygen and glucose deprivation-induced death of mouse neural stem cells via inhibition of p38 MAPK activation. Neurosci Lett. 2022;774:136526.
  • Liu GX, Xi HQ, Sun XY, et al. Role of periostin and its antagonist PNDA-3 in gastric cancer metastasis. World J Gastroenterol. 2015;21:2605–2613.
  • Um JE, Park JT, Nam BY, et al. Periostin-binding DNA aptamer treatment attenuates renal fibrosis under diabetic conditions. Sci Rep. 2017;7:8490.
  • Nanri Y, Nunomura S, Terasaki Y, et al. Cross-talk between transforming growth factor-b and periostin can be targeted for pulmonary fibrosis. Am J Respir Cell Mol Biol. 2020;62:204–216.
  • Kubota D, Ishikawa M, Yamamoto M, et al. Tricyclic pharmacophore-based molecules as novel integrin αvβ3 antagonists. Part 1: design and synthesis of a lead compound exhibiting αvβ3/αIIbβ3 dual antagonistic activity. Bioorg Med Chem. 2006;14:2089–2108 .
  • Ishikawa M, Kubota D, Yamamoto M, et al. Tricyclic pharmacophore-based molecules as novel integrin αvβ3 antagonists. Part 2: synthesis of potent αvβ3/αIIbβ3 dual antagonists. Bioorg Med Chem. 2006;14:2109–2130.
  • Ishikawa M, Hiraiwa Y, Kubota D, et al. Tricyclic pharmacophore-based molecules as novel integrin αvβ3 antagonists. Part III: synthesis of potent antagonists with αvβ3/αIIbβ3 dual activity and improved water solubility. Bioorg Med Chem. 2006;14:2131–2150.
  • Kubota D, Ishikawa M, Yahata N, et al. Tricyclic pharmacophore-based molecules as novel integrin αvβ3 antagonists. Part IV: preliminary control of αvβ3 selectivity by meta-oriented substitution. Bioorg Med Chem. 2006;14:4158–4181.