485
Views
0
CrossRef citations to date
0
Altmetric
Review

Epithelial cell dysfunction in chronic rhinosinusitis: the epithelial–mesenchymal transition

, , &
Pages 959-968 | Received 23 May 2023, Accepted 28 Jun 2023, Published online: 04 Jul 2023

References

  • Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(Suppl S29):1–464. doi: 10.4193/Rhin20.401
  • Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol. 2022;149(5):1491–1503. doi: 10.1016/j.jaci.2022.02.016
  • Van Crombruggen K, Zhang N, Gevaert P, et al. Pathogenesis of chronic rhinosinusitis: inflammation. J Allergy Clin Immunol. 2011 Oct;128(4):728–732.
  • Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis. J Allergy Clin Immunol. 2009;124(1):37–42. doi: 10.1016/j.jaci.2009.04.045
  • Bachert C, Marple B, Schlosser RJ, et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020;6(1):86. doi: 10.1038/s41572-020-00218-1
  • Takahashi T, Schleimer RP. Epithelial-cell-derived extracellular vesicles in pathophysiology of epithelial injury and repair in chronic rhinosinusitis: connecting immunology in research lab to biomarkers in clinics. Int J Mol Sci. 2021;22(21):11709. doi: 10.3390/ijms222111709
  • Watelet JB, Van Zele T, Gjomarkaj M, et al. Tissue remodelling in upper airways: where is the link with lower airway remodelling? Allergy. 2006;61(11):1249–1258. doi: 10.1111/j.1398-9995.2006.01226.x
  • Watelet JB, Demetter P, Claeys C, et al. Wound healing after paranasal sinus surgery: neutrophilic inflammation influences the outcome. Histopathology. 2006;48(2):174–181. doi: 10.1111/j.1365-2559.2005.02310.x
  • Pothoven KL, Norton JE, Hulse KE, et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J Allergy Clin Immunol. 2015;136(3):737–46 e4. doi: 10.1016/j.jaci.2015.01.043
  • Jiao J, Zhang L. Influence of intranasal drugs on human nasal mucociliary clearance and ciliary beat frequency. Allergy Asthma Immunol Res. 2019;11(3):306–319. doi: 10.4168/aair.2019.11.3.306
  • Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017;9(4):a028241. doi: 10.1101/cshperspect.a028241
  • Sakashita M, Takabayashi T, Imoto Y, et al. Retinoic acid promotes fibrinolysis and may regulate polyp formation. J Allergy Clin Immunol. 2022;150(5):1114–24 e3. doi: 10.1016/j.jaci.2022.05.021
  • Takabayashi T, Kato A, Peters AT, et al. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am J Respir Crit Care Med. 2013;187(1):49–57. doi: 10.1164/rccm.201207-1292OC
  • Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med. 2018;12(4):361–373. doi: 10.1007/s11684-018-0656-6
  • Kao SS, Bassiouni A, Ramezanpour M, et al. Proteomic analysis of nasal mucus samples of healthy patients and patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2021;147(1):168–178. doi: 10.1016/j.jaci.2020.06.037
  • Hupin C, Gohy S, Bouzin C, et al. Features of mesenchymal transition in the airway epithelium from chronic rhinosinusitis. Allergy. 2014;69(11):1540–1549. doi: 10.1111/all.12503
  • Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–142. doi: 10.1038/nrm1835
  • Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2):69–84. doi: 10.1038/s41580-018-0080-4
  • Cannito S, Novo E, di Bonzo LV, et al. Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal. 2010;12(12):1383–1430. doi: 10.1089/ars.2009.2737
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–1428. doi: 10.1172/JCI39104
  • Chiarella E, Lombardo N, Lobello N, et al. Nasal polyposis: insights in epithelial-mesenchymal transition and differentiation of polyp mesenchymal stem cells. Int J Mol Sci. 2020;21(18):6878. doi: 10.3390/ijms21186878
  • Elzamly S, Badri N, Padilla O, et al. Epithelial-mesenchymal transition markers in breast cancer and pathological response after neoadjuvant chemotherapy. Breast Cancer (Auckl). 2018;12:1178223418788074. doi: 10.1177/1178223418788074
  • Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem. 2003;278(23):21113–21123. doi: 10.1074/jbc.M211304200
  • Loh CY, Chai JY, Tang TF, et al. The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells. 2019;8(10):1118. doi: 10.3390/cells8101118
  • Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(6):1429–1437. doi: 10.1172/JCI36183
  • Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L525–34. doi: 10.1152/ajplung.00163.2007
  • Ryu G, Mo JH, Shin HW. Epithelial-to-mesenchymal transition in neutrophilic chronic rhinosinusitis. Curr Opin Allergy Clin Immunol. 2021;21(1):30–37. doi: 10.1097/ACI.0000000000000701
  • Zhong B, Seah JJ, Liu F, et al. The role of hypoxia in the pathophysiology of chronic rhinosinusitis. Allergy. 2022;77(11):3217–3232. doi: 10.1111/all.15384
  • Shin SH, Ye MK, Lee DW, et al. Korean red ginseng and ginsenoside rg3 suppress asian sand dust-induced epithelial-mesenchymal transition in nasal epithelial cells. Molecules. 2022;27(9):2642. doi: 10.3390/molecules27092642
  • Zhao R, Guo Z, Zhang R, et al. Nasal epithelial barrier disruption by particulate matter. J Appl Toxicol. 2018;38(5):678–687. doi: 10.1002/jat.3573
  • Sun Z, Ji N, Ma Q, et al. Epithelial-mesenchymal transition in asthma airway remodeling is regulated by the IL-33/CD146 axis. Front Immunol. 2020;11:1598. doi: 10.3389/fimmu.2020.01598
  • Minor DM, Proud D. Role of human rhinovirus in triggering human airway epithelial-mesenchymal transition. Respir Res. 2017;18(1):110. doi: 10.1186/s12931-017-0595-9
  • Xiang Z, Liang Z, Yanfeng H, et al. Persistence of RSV promotes proliferation and epithelial-mesenchymal transition of bronchial epithelial cells through Nodal signaling. J Med Microbiol. 2017;66(10):1499–1505. doi: 10.1099/jmm.0.000581
  • Borthwick LA, Sunny SS, Oliphant V, et al. Pseudomonas aeruginosa accentuates epithelial-to-mesenchymal transition in the airway. Eur Respir J. 2011;37(5):1237–1247. doi: 10.1183/09031936.00088410
  • Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–829. doi: 10.1016/j.devcel.2008.05.009
  • Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017;12(1):331–357. doi: 10.1146/annurev-pathol-052016-100401.
  • Morikawa M, Derynck R, Miyazono K. TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873. doi: 10.1101/cshperspect.a021873
  • Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-beta/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76–83. doi: 10.1016/j.cbi.2018.07.008
  • Kou W, Hu GH, Yao HB, et al. Regulation of transforming growth factor-beta1 activation and expression in the tissue remodeling involved in chronic rhinosinusitis. ORL J Otorhinolaryngol Relat Spec. 2012;74(3):172–178. doi: 10.1159/000338799
  • Van Bruaene N, Derycke L, Perez-Novo CA, et al. TGF-beta signaling and collagen deposition in chronic rhinosinusitis. J Allergy Clin Immunol. 2009;124(2):253-9, 259 e1–2. doi: 10.1016/j.jaci.2009.04.013
  • Li H, Liu Q, Wang H, et al. Epithelial‑mesenchymal transition in chronic rhinosinusitis (CRS) and the prognostic value of alpha‑SMA in postoperative outcomes of patients with CRS. Mol Med Rep. 2019;20(3):2441–2449. doi: 10.3892/mmr.2019.10461
  • Li X, Li C, Zhu G, et al. TGF-beta1 induces epithelial-mesenchymal transition of chronic sinusitis with nasal polyps through MicroRNA-21. Int Arch Allergy Immunol. 2019;179(4):304–319. doi: 10.1159/000497829
  • Konnecke M, Burmeister M, Pries R, et al. Epithelial-mesenchymal transition in chronic rhinosinusitis: differences revealed between epithelial cells from nasal polyps and inferior turbinates. Arch Immunol Ther Exp (Warsz). 2017;65(2):157–173. doi: 10.1007/s00005-016-0409-7
  • Balsalobre L, Pezato R, Perez-Novo C, et al. Epithelium and stroma from nasal polyp mucosa exhibits inverse expression of TGF-beta1 as compared with healthy nasal mucosa. J Otolaryngol Head Neck Surg. 2013;42(1):29. doi: 10.1186/1916-0216-42-29
  • Yamin M, Holbrook EH, Gray ST, et al. Profibrotic transforming growth factor beta 1 and activin a are increased in nasal polyp tissue and induced in nasal polyp epithelium by cigarette smoke and Toll-like receptor 3 ligation. Int Forum Allergy Rhinol. 2015;5(7):573–582. doi: 10.1002/alr.21516
  • Qin D, Liu P, Zhou H, et al. TIM-4 in macrophages contributes to nasal polyp formation through the TGF-beta1-mediated epithelial to mesenchymal transition in nasal epithelial cells. Front Immunol. 2022;13:941608. doi: 10.3389/fimmu.2022.941608
  • Li YC, An YS, Wang T, et al. Analysis of transforming growth factor beta signaling in chronic rhinosinusitis. Chin Med J (Engl). 2013;126(17):3340–3343.
  • Hata A, Chen YG. TGF-beta signaling from receptors to smads. Cold Spring Harb Perspect Biol. 2016;8(9):a022061. doi: 10.1101/cshperspect.a022061
  • Lee HY, Kim IK, Yoon HK, et al. Inhibitory effects of resveratrol on airway remodeling by transforming growth factor-beta/smad signaling pathway in chronic asthma model. Allergy Asthma Immunol Res. 2017;9(1):25–34. doi: 10.4168/aair.2017.9.1.25
  • Hackett TL, Warner SM, Stefanowicz D, et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1. Am J Respir Crit Care Med. 2009;180(2):122–133. doi: 10.1164/rccm.200811-1730OC
  • Zhong Y, Li Y, Zhang H. Silencing TBX1 exerts suppressive effects on epithelial-mesenchymal transition and inflammation of chronic rhinosinusitis through inhibition of the TGFbeta-Smad2/3 signaling pathway in mice. Am J Rhinol Allergy. 2020;34(1):16–25. doi: 10.1177/1945892419866543
  • Derynck R, Zhang Y. Intracellular signalling: the mad way to do it. Curr Biol. 1996;6(10):1226–1229. doi: 10.1016/S0960-9822(96)00702-6
  • Bachegowda L, Gligich O, Mantzaris I, et al. Signal transduction inhibitors in treatment of myelodysplastic syndromes. J Hematol Oncol. 2013;6(1):50. doi: 10.1186/1756-8722-6-50
  • Peng D, Fu M, Wang M, et al. Targeting TGF-beta signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022;21(1):104. doi: 10.1186/s12943-022-01569-x
  • Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19(1):128–139. doi: 10.1038/cr.2008.328
  • Yang HW, Lee SA, Shin JM, et al. Glucocorticoids ameliorate TGF-beta1-mediated epithelial-to-mesenchymal transition of airway epithelium through MAPK and Snail/Slug signaling pathways. Sci Rep. 2017;7(1):3486. doi: 10.1038/s41598-017-02358-z
  • Park JH, Shin JM, Yang HW, et al. Dnmts are Involved in TGF-beta1-induced epithelial-mesenchymal transitions in airway epithelial cells. Int J Mol Sci. 2022;23(6):3003. doi: 10.3390/ijms23063003
  • Early SB, Hise K, Han JK, et al. Hypoxia stimulates inflammatory and fibrotic responses from nasal-polyp derived fibroblasts. Laryngoscope. 2007;117(3):511–515. doi: 10.1097/MLG.0b013e31802e927b
  • Khalmuratova R, Park JW, Shin HW. Immune cell responses and mucosal barrier disruptions in chronic rhinosinusitis. Immune Netw. 2017;17(1):60–67. doi: 10.4110/in.2017.17.1.60
  • Goldberg MA, Schneider TJ. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem. 1994;269(6):4355–4359. doi: 10.1016/S0021-9258(17)41787-X
  • Kuma YI, Hosomichi J, Maeda H, et al. Intermittent hypoxia induces turbinate mucosal hypertrophy via upregulating the gene expression related to inflammation and EMT in rats. Sleep Breath. 2021;25(2):677–684. doi: 10.1007/s11325-020-02162-6
  • Shin HW, Cho K, Kim DW, et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. Am J Respir Crit Care Med. 2012;185(9):944–954. doi: 10.1164/rccm.201109-1706OC
  • Lim JH, Lee YM, Chun YS, et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38(6):864–878. doi: 10.1016/j.molcel.2010.05.023
  • Yoon H, Shin SH, Shin DH, et al. Differential roles of Sirt1 in HIF-1alpha and HIF-2alpha mediated hypoxic responses. Biochem Biophys Res Commun. 2014;444(1):36–43. doi: 10.1016/j.bbrc.2014.01.001
  • Lee M, Kim DW, Yoon H, et al. Sirtuin 1 attenuates nasal polypogenesis by suppressing epithelial-to-mesenchymal transition. J Allergy Clin Immunol. 2016;137(1):87–98 e7. doi: 10.1016/j.jaci.2015.07.026
  • Kim Y, Hwang S, Khalmuratova R, et al. Alpha-Helical cell-penetrating peptide-mediated nasal delivery of resveratrol for inhibition of epithelial-to-mesenchymal transition. J Control Release. 2020;317:181–194. doi: 10.1016/j.jconrel.2019.11.034
  • Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–1205. doi: 10.1016/j.cell.2012.05.012
  • Ghosh N, Hossain U, Mandal A, et al. The Wnt signaling pathway: a potential therapeutic target against cancer. Ann N Y Acad Sci. 2019;1443(1):54–74. doi: 10.1111/nyas.14027
  • Ikeda S, Kishida S, Yamamoto H, et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. Embo J. 1998;17(5):1371–1384. doi: 10.1093/emboj/17.5.1371
  • Bolos V, Peinado H, Perez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(Pt 3):499–511. doi: 10.1242/jcs.00224
  • Boscke R, Vladar EK, Konnecke M, et al. Wnt signaling in chronic rhinosinusitis with nasal polyps. Am J Respir Cell Mol Biol. 2017;56(5):575–584. doi: 10.1165/rcmb.2016-0024OC
  • Bae JS, Ryu G, Kim JH, et al. Effects of Wnt signaling on epithelial to mesenchymal transition in chronic rhinosinusitis with nasal polyp. Thorax. 2020;75(11):982–993. doi: 10.1136/thoraxjnl-2019-213916
  • Bruchhage KL, Koennecke M, Drenckhan M, et al. 1,8-cineol inhibits the Wnt/beta-catenin signaling pathway through GSK-3 dephosphorylation in nasal polyps of chronic rhinosinusitis patients. Eur J Pharmacol. 2018;835:140–146. doi: 10.1016/j.ejphar.2018.07.060
  • Gong N, Shi L, Bing X, et al. s100a4/tcf complex transcription regulation drives epithelial-mesenchymal transition in chronic sinusitis through Wnt/GSK-3beta/beta-catenin signaling. Front Immunol. 2022;13:835888. doi: 10.3389/fimmu.2022.835888
  • Linke R, Pries R, Konnecke M, et al. The MEK1/2-ERK1/2 pathway is activated in chronic rhinosinusitis with nasal polyps. Arch Immunol Ther Exp (Warsz). 2014;62(3):217–229. doi: 10.1007/s00005-014-0281-2
  • Vetuschi A, Pompili S, Di Marco GP, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps? Eur J Histochem. 2020;64(1):3079. doi: 10.4081/ejh.2020.3079
  • Sims GP, Rowe DC, Rietdijk ST, et al. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28(1):367–388. doi: 10.1146/annurev.immunol.021908.132603
  • Liu PL, Liu WL, Chang JM, et al. MicroRNA-200c inhibits epithelial-mesenchymal transition, invasion, and migration of lung cancer by targeting HMGB1. PLoS One. 2017;12(7):e0180844. doi: 10.1371/journal.pone.0180844
  • Dzaman K, Szczepanski MJ, Molinska-Glura M, et al. Expression of the receptor for advanced glycation end products, a target for high mobility group box 1 protein, and its role in chronic recalcitrant rhinosinusitis with nasal polyps. Arch Immunol Ther Exp (Warsz). 2015;63(3):223–230. doi: 10.1007/s00005-014-0325-7
  • Yang P, Chen S, Zhong G, et al. Agonist of PPAR-gamma reduced epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps via inhibition of high mobility group box1. Int J Med Sci. 2019;16(12):1631–1641. doi: 10.7150/ijms.35936
  • Lee M, Kim DW, Khalmuratova R, et al. The IFN-gamma-p38, ERK kinase axis exacerbates neutrophilic chronic rhinosinusitis by inducing the epithelial-to-mesenchymal transition. Mucosal Immunol. 2019;12(3):601–611. doi: 10.1038/s41385-019-0149-1
  • Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. doi: 10.1038/nrm3758
  • Zhang XH, Zhang YN, Li HB, et al. Overexpression of miR-125b, a novel regulator of innate immunity, in eosinophilic chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med. 2012;185(2):140–151. doi: 10.1164/rccm.201103-0456OC
  • Yang N, Cheng H, Mo Q, et al. miR‑155‑5p downregulation inhibits epithelial‑to‑mesenchymal transition by targeting SIRT1 in human nasal epithelial cells. Mol Med Rep. 2020;22(5):3695–3704. doi: 10.3892/mmr.2020.11468
  • Jiang W, Zhou C, Ma C, et al. TGF-beta1 induces epithelial-to-mesenchymal transition in chronic rhinosinusitis with nasal polyps through microRNA-182. Asian Pac J Allergy Immunol. 2021. doi: 10.12932/AP-040921-1224
  • Jian B, Yin P. STAT1 mediates the PI3K/AKT pathway through promoting microRNA-18a in nasal polyps. Immunopharmacol Immunotoxicol. 2022;44(2):194–205. doi: 10.1080/08923973.2021.2025388
  • Hao W, Zhu Y, Guo Y, et al. MiR-1287-5p upregulation inhibits the EMT and pro-inflammatory cytokines in LPS-induced human nasal epithelial cells (HNECs). Transpl Immunol. 2021;68:101429. doi: 10.1016/j.trim.2021.101429
  • Shin JM, Park JH, Yang HW, et al. MiR-29b regulates TGF-beta1-induced epithelial-mesenchymal transition by inhibiting heat shock protein 47 expression in airway epithelial cells. Int J Mol Sci. 2021;22(21):11535. doi: 10.3390/ijms222111535
  • Xia Y, Wang H, Yin J. The role of epithelial-mesenchymal transition in chronic rhinosinusitis. Int Arch Allergy Immunol. 2022;183(10):1029–1039. doi: 10.1159/000524950
  • He H, Cao L, Wang Z, et al. Sinomenine relieves airway remodeling by inhibiting epithelial-mesenchymal transition through downregulating TGF-beta1 and Smad3 Expression in vitro and in vivo. Front Immunol. 2021;12:736479. doi: 10.3389/fimmu.2021.736479
  • Zhou JP, Lin YN, Li N, et al. Angiotensin-(1-7) rescues chronic intermittent hypoxia-aggravated transforming growth factor-beta-mediated airway remodeling in murine and cellular models of asthma. J Pharmacol Exp Ther. 2020;375(2):268–275. doi: 10.1124/jpet.120.000150
  • Chu S, Zhang X, Sun Y, et al. Atrial natriuretic peptide inhibits epithelial-mesenchymal transition (EMT) of bronchial epithelial cells through cGMP/PKG signaling by targeting Smad3 in a murine model of allergic asthma. Exp Lung Res. 2019;45(8):245–254. doi: 10.1080/01902148.2019.1660734
  • Hosoki K, Kainuma K, Toda M, et al. Montelukast suppresses epithelial to mesenchymal transition of bronchial epithelial cells induced by eosinophils. Biochem Biophys Res Commun. 2014;449(3):351–356. doi: 10.1016/j.bbrc.2014.05.033
  • Zeng H, Wang Y, Gu Y, et al. Polydatin attenuates reactive oxygen species-induced airway remodeling by promoting Nrf2-mediated antioxidant signaling in asthma mouse model. Life Sci. 2019;218:25–30. doi: 10.1016/j.lfs.2018.08.013
  • Yadav UC, Naura AS, Aguilera-Aguirre L, et al. Aldose reductase inhibition prevents allergic airway remodeling through PI3K/AKT/GSK3β pathway in Mice. PLoS One. 2013;8(2):e57442. doi: 10.1371/journal.pone.0057442
  • Song L, Sen S, Sun Y, et al. Ketamine inhalation ameliorates ovalbumin-induced murine asthma by suppressing the epithelial-mesenchymal transition. Med Sci Monit. 2016;22:2471–2483. doi: 10.12659/MSM.899955
  • Park IH, Kang JH, Shin JM, et al. Trichostatin a inhibits epithelial mesenchymal transition induced by TGF-β1 in airway epithelium. PLoS One. 2016;11(8):e0162058. doi: 10.1371/journal.pone.0162058
  • Lee HM, Kang JH, Shin JM, et al. Chemical chaperone of endoplasmic reticulum stress inhibits epithelial-mesenchymal transition induced by TGF-beta1 in airway epithelium via the c-Src Pathway. Mediators Inflamm. 2017;2017:8123281. doi: 10.1155/2017/8123281
  • Li S, Yang Q, Chen F, et al. The antifibrotic effect of pheretima protein is mediated by the TGF-beta1/Smad2/3 pathway and attenuates inflammation in bleomycin-induced idiopathic pulmonary fibrosis. J Ethnopharmacol. 2022;286:114901. doi: 10.1016/j.jep.2021.114901
  • Ge A, Ma Y, Liu YN, et al. Diosmetin prevents TGF-beta1-induced epithelial-mesenchymal transition via ROS/MAPK signaling pathways. Life Sci. 2016;153:1–8. doi: 10.1016/j.lfs.2016.04.023
  • Zhu Y, Sun D, Liu H, et al. Bixin protects mice against bronchial asthma though modulating PI3K/Akt pathway. Int Immunopharmacol. 2021;101(Pt B):108266. doi: 10.1016/j.intimp.2021.108266
  • Xu L, Xiang X, Ji X, et al. Effects and mechanism of dehydroepiandrosterone on epithelial-mesenchymal transition in bronchial epithelial cells. Exp Lung Res. 2014;40(5):211–221. doi: 10.3109/01902148.2013.879966
  • Pu Y, Liu Y, Liao S, et al. Azithromycin ameliorates OVA-induced airway remodeling in Balb/c mice via suppression of epithelial-to-mesenchymal transition. Int Immunopharmacol. 2018;58:87–93. doi: 10.1016/j.intimp.2018.03.016
  • Tang J, Liu J, Zhang X, et al. The role of osthole on TGF-β-induced lung epithelium apoptosis injury and epithelial-mesenchymal transition-mediated airway remodeling in pediatric asthma. J Healthc Eng. 2022;2022:1–11. doi: 10.1155/2022/7099097
  • Kao HF, Chang-Chien PW, Chang WT, et al. Propolis inhibits TGF-beta1-induced epithelial-mesenchymal transition in human alveolar epithelial cells via PPARgamma activation. Int Immunopharmacol. 2013;15(3):565–574. doi: 10.1016/j.intimp.2012.12.018
  • Shang Q, Zhu L, Shang W, et al. Dioscin exhibits protective effects on in vivo and in vitro asthma models via suppressing TGF-beta1/Smad2/3 and AKT pathways. J Biochem Mol Toxicol. 2022;36(8):e23084. doi: 10.1002/jbt.23084
  • Gong JH, Cho IH, Shin D, et al. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice. Lab Invest. 2014;94(3):297–308. doi: 10.1038/labinvest.2013.137
  • Fischer KD, Agrawal DK. Vitamin D regulating TGF-beta induced epithelial-mesenchymal transition. Respir Res. 2014;15(1):146. doi: 10.1186/s12931-014-0146-6
  • Fischer KD, Hall SC, Agrawal DK, et al. Vitamin D supplementation reduces induction of epithelial-mesenchymal transition in allergen sensitized and challenged mice. PLoS One. 2016;11(2):e0149180. doi: 10.1371/journal.pone.0149180
  • Zhang AN, Li N, Chen ZC, et al. Amygdalin alleviated TGF-beta-induced epithelial-mesenchymal transition in bronchial epithelial cells. Chem Biol Interact. 2023;369:110235. doi: 10.1016/j.cbi.2022.110235
  • Yao L, Wang S, Wei P, et al. Huangqi-Fangfeng protects against allergic airway remodeling through inhibiting epithelial-mesenchymal transition process in mice via regulating epithelial derived TGF-beta1. Phytomedicine. 2019;64:153076. doi: 10.1016/j.phymed.2019.153076
  • Zeng H, Gao H, Zhang M, et al. Atractylon treatment attenuates pulmonary fibrosis via regulation of the mmu_circ_0000981/miR-211-5p/TGFBR2 axis in an ovalbumin-induced asthma mouse model. Inflammation. 2021;44(5):1856–1864. doi: 10.1007/s10753-021-01463-6
  • Tian X, Tian X, Huo R, et al. Bacillus Calmette-Guerin alleviates airway inflammation and remodeling by preventing TGF-beta(1) induced epithelial-mesenchymal transition. Hum Vaccin Immunother. 2017;13(8):1758–1764. doi: 10.1080/21645515.2017.1313366
  • Huo R, Tian X, Chang Q, et al. Targeted inhibition of beta-catenin alleviates airway inflammation and remodeling in asthma via modulating the profibrotic and anti-inflammatory actions of transforming growth factor-beta(1). Ther Adv Respir Dis. 2021;15:1753466620981858. doi: 10.1177/1753466620981858
  • Turkeli A, Yilmaz O, Karaman M, et al. Anti-VEGF treatment suppresses remodeling factors and restores epithelial barrier function through the E-cadherin/beta-catenin signaling axis in experimental asthma models. Exp Ther Med. 2021;22(1):689. doi: 10.3892/etm.2021.10121
  • Song J, Zhu XM, Wei QY. MSCs reduce airway remodeling in the lungs of asthmatic rats through the Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24(21):11199–11211. doi: 10.26355/eurrev_202011_23608
  • Feng KN, Meng P, Zou XL, et al. IL-37 protects against airway remodeling by reversing bronchial epithelial-mesenchymal transition via IL-24 signaling pathway in chronic asthma. Respir Res. 2022;23(1):244. doi: 10.1186/s12931-022-02167-7
  • Huang N, Liu K, Liu J, et al. Interleukin-37 alleviates airway inflammation and remodeling in asthma via inhibiting the activation of NF-kappaB and STAT3 signalings. Int Immunopharmacol. 2018;55:198–204. doi: 10.1016/j.intimp.2017.12.010
  • Huang C, Sun Y, Liu N, et al. IL-27 attenuates airway inflammation and epithelial-mesenchymal transition in allergic asthmatic mice possibly via the RhoA/ROCK signalling pathway. Eur Cytokine Netw. 2022;33(1):13–24.
  • Yang N, Zhang H, Cai X, et al. Epigallocatechin-3-gallate inhibits inflammation and epithelial‑mesenchymal transition through the PI3K/AKT pathway via upregulation of PTEN in asthma. Int J Mol Med. 2018;41(2):818–828. doi: 10.3892/ijmm.2017.3292
  • Yan B, Wang Y, Li Y, et al. Inhibition of arachidonate 15-lipoxygenase reduces the epithelial-mesenchymal transition in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2019;9(3):270–280. doi: 10.1002/alr.22243
  • Lee YZ, Yap HM, Shaari K, et al. Blockade of eosinophil-induced bronchial epithelial-mesenchymal transition with a geranyl acetophenone in a coculture model. Front Pharmacol. 2017;8:837. doi: 10.3389/fphar.2017.00837
  • Zhou JP, Tang W, Feng Y, et al. Angiotensin-(1-7) decreases the expression of collagen I via TGF-beta1/Smad2/3 and subsequently inhibits fibroblast-myofibroblast transition. Clin Sci. 2016;130(21):1983–1991. doi: 10.1042/CS20160193
  • Shao M, Wen ZB, Yang HH, et al. Exogenous angiotensin (1-7) directly inhibits epithelial-mesenchymal transformation induced by transforming growth factor-beta1 in alveolar epithelial cells. Biomed Pharmacother. 2019;117:109193. doi: 10.1016/j.biopha.2019.109193
  • Imran M, Rauf A, Shah ZA, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: a comprehensive review. Phytother Res. 2019;33(2):263–275. doi: 10.1002/ptr.6227
  • Zhu X, Li Q, Hu G, et al. BMS‑345541 inhibits airway inflammation and epithelial‑mesenchymal transition in airway remodeling of asthmatic mice. Int J Mol Med. 2018;42(4):1998–2008. doi: 10.3892/ijmm.2018.3762

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.