440
Views
0
CrossRef citations to date
0
Altmetric
Review

Olfactory dysfunction in chronic rhinosinusitis: insights into the underlying mechanisms and treatments

, , &
Pages 993-1004 | Received 26 Jun 2023, Accepted 07 Jul 2023, Published online: 13 Jul 2023

References

  • Dietz de Loos D, Lourijsen ES, Wildeman MAM, et al. Prevalence of chronic rhinosinusitis in the general population based on sinus radiology and symptomatology. J Allergy Clin Immunol. 2019 Mar;143(3):1207–1214. PubMed PMID: 30578880. doi: 10.1016/j.jaci.2018.12.986
  • Hirsch AG, Stewart WF, Sundaresan AS, et al. Nasal and sinus symptoms and chronic rhinosinusitis in a population-based sample. Allergy. 2017 Feb;72(2):274–281. PubMed PMID: 27590749; PubMed Central PMCID: PMCPMC5497579. doi: 10.1111/all.13042
  • Fokkens WJ, Lund VJ, Hopkins C, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020 Feb 20;58(Suppl S29):1–464. PubMed PMID: 32077450. doi: 10.4193/Rhin20.401
  • Shi JB, Fu QL, Zhang H, et al. Epidemiology of chronic rhinosinusitis: results from a cross-sectional survey in seven Chinese cities. Allergy. 2015 May;70(5):533–539. PubMed PMID: 25631304; PubMed Central PMCID: PMCPMC4409092. doi: 10.1111/all.12577
  • Tomassen P, Vandeplas G, Van Zele T, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016 May;137(5):1449–1456 e4. PubMed PMID: 26949058. doi: 10.1016/j.jaci.2015.12.1324
  • Bachert C, Akdis CA. Phenotypes and emerging endotypes of chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2016 Jul;4(4):621–628. PubMed PMID: 27393777. doi: 10.1016/j.jaip.2016.05.004
  • Nakayama T, Haruna SI. A review of current biomarkers in chronic rhinosinusitis with or without nasal polyps. Expert Rev Clin Immunol. 2023 Apr;7:1–10. PubMed PMID: 37017326. doi: 10.1080/1744666X.2023.2200164
  • Schlosser RJ, Smith TL, Mace JC, et al. Factors driving olfactory loss in patients with chronic rhinosinusitis: a case control study. Int Forum Allergy Rhinol. 2020 Jan;10(1):7–14. PubMed PMID: 31899859; PubMed Central PMCID: PMCPMC6948021. doi: 10.1002/alr.22445
  • Mori E, Matsuwaki Y, Mitsuyama C, et al. Risk factors for olfactory dysfunction in chronic rhinosinusitis. Auris Nasus Larynx. 2013 Oct;40(5):465–469. PubMed PMID: 23422234. doi: 10.1016/j.anl.2012.12.005
  • Passali GC, Passali D, Cingi C, et al. Smell impairment in patients with chronic rhinosinusitis: a real-life study. Eur Arch Otorhinolaryngol. 2022 Feb;279(2):773–777. PubMed PMID: 33942122. doi: 10.1007/s00405-021-06848-9
  • Chung JH, Lee YJ, Kang TW, et al. Altered quality of life and psychological health (SCL-90-R) in patients with chronic rhinosinusitis with nasal polyps. Ann Otol Rhinol Laryngol. 2015 Aug;124(8):663–670. PubMed PMID: 25743178. doi: 10.1177/0003489415576181
  • Macchi A, Giorli A, Cantone E, et al. Sense of smell in chronic rhinosinusitis: A multicentric study on 811 patients. Front Allergy . 2023;4:1083964. [ PubMed PMID: 37152304; PubMed Central PMCID: PMCPMC10160403]. doi: 10.3389/falgy.2023.1083964
  • Yan X, Whitcroft KL, Hummel T. Olfaction: Sensitive indicator of inflammatory burden in chronic rhinosinusitis. Laryngoscope Investig Otolaryngol. 2020 Dec;5(6):992–1002. PubMed PMID: 33364387; PubMed Central PMCID: PMCPMC7752087. doi: 10.1002/lio2.485
  • Kanemitsu Y, Suzuki M, Fukumitsu K, et al. A novel pathophysiologic link between upper and lower airways in patients with chronic rhinosinusitis: Association of sputum periostin levels with upper airway inflammation and olfactory function. World Allergy Organ J. 2020 Jan;13(1):100094. PubMed PMID: 32015784; PubMed Central PMCID: PMCPMC6992843. doi: 10.1016/j.waojou.2019.100094
  • Zhao K, Jiang J, Pribitkin EA, et al. Conductive olfactory losses in chronic rhinosinusitis? A computational fluid dynamics study of 29 patients. Int Forum Allergy Rhinol. 2014 Apr;4(4):298–308. PubMed PMID: 24449655; PubMed Central PMCID: PMCPMC4144185. doi: 10.1002/alr.21272
  • Yee KK, Pribitkin EA, Cowart BJ, et al. Analysis of the olfactory mucosa in chronic rhinosinusitis. Ann N Y Acad Sci. 2009 Jul;1170:590–595. PubMed PMID: 19686198; PubMed Central PMCID: PMCPMC2729508. doi: 10.1111/j.1749-6632.2009.04364.x
  • Wolfensberger M, Hummel T. Anti-inflammatory and surgical therapy of olfactory disorders related to sino-nasal disease. Chem Senses. 2002 Sep;27(7):617–622. PubMed PMID: 12200341. doi: 10.1093/chemse/27.7.617
  • Alt JA, Mace JC, Buniel MC, et al. Predictors of olfactory dysfunction in rhinosinusitis using the brief smell identification test. Laryngoscope. 2014 Jul;124(7):E259–66. PubMed PMID: 24402746; PubMed Central PMCID: PMCPMC4109707. doi: 10.1002/lary.24587
  • Soler ZM, Schlosser RJ, Bodner TE, et al. Endotyping chronic rhinosinusitis based on olfactory cleft mucus biomarkers. J Allergy Clin Immunol. 2021 May;147(5):1732–1741 e1. PubMed PMID: 33549569; PubMed Central PMCID: PMCPMC8113080. doi: 10.1016/j.jaci.2021.01.021
  • Kern RC. Chronic sinusitis and anosmia: pathologic changes in the olfactory mucosa. Laryngoscope. 2000;Jul7(7):1071–1077. PubMed PMID: 10892672. doi: 10.1097/00005537-200007000-00001
  • Smith TD, Bhatnagar KP. Anatomy of the olfactory system. Handb Clin Neurol. 2019;164:17–28. PubMed PMID: 31604545. doi: 10.1016/B978-0-444-63855-7.00002-2
  • Leopold DA, Hummel T, Schwob JE, et al. Anterior distribution of human olfactory epithelium. Laryngoscope. 2000 Mar;110(3 Pt 1):417–421. PubMed PMID: 10718430. doi: 10.1097/00005537-200003000-00016
  • Fitzek M, Patel PK, Solomon PD, et al. Integrated age-related immunohistological changes occur in human olfactory epithelium and olfactory bulb. J Comp Neurol. 2022 Aug;530(12):2154–2175. PubMed PMID: 35397118; PubMed Central PMCID: PMCPMC9232960. doi: 10.1002/cne.25325
  • Feron F, Perry C, McGrath JJ, et al. New techniques for biopsy and culture of human olfactory epithelial neurons. Arch Otolaryngol Head Neck Surg. 1998 Aug;124(8):861–866. PubMed PMID: 9708710. doi: 10.1001/archotol.124.8.861
  • Menini A, Lagostena L, Boccaccio A. Olfaction: from odorant molecules to the olfactory cortex. News Physiol Sci. 2004 Jun;19:101–104. PubMed PMID: 15143202. doi: 10.1152/nips.1507.2003
  • Patel RM, Pinto JM. Olfaction: anatomy, physiology, and disease. Clin Anat. 2014 Jan;27(1):54–60. PubMed PMID: 24272785. doi: 10.1002/ca.22338
  • Durante MA, Kurtenbach S, Sargi ZB, et al. Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat Neurosci. 2020 Mar;23(3):323–326. PubMed PMID: 32066986; PubMed Central PMCID: PMCPMC7065961. doi: 10.1038/s41593-020-0587-9
  • Schwob JE, Jang W, Holbrook EH, et al. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J Comp Neurol. 2017 Mar 1;525(4):1034–1054. PubMed PMID: 27560601; PubMed Central PMCID: PMCPMC5805156. doi: 10.1002/cne.24105
  • Iwai N, Zhou Z, Roop DR, et al. Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells. 2008 May;26(5):1298–1306. PubMed PMID: 18308944; PubMed Central PMCID: PMCPMC4091843. doi: 10.1634/stemcells.2007-0891
  • Wu Q, Xu X, Miao X, et al. YAP signaling in horizontal basal cells promotes the regeneration of olfactory epithelium after injury. Stem Cell Rep. 2022 Mar 8;17(3):664–677. PubMed PMID: 35148842; PubMed Central PMCID: PMCPMC9039758. doi: 10.1016/j.stemcr.2022.01.007
  • Li Z, Wei M, Shen W, et al. Sox2 regulates globose basal cell regeneration in the olfactory epithelium. Int Forum Allergy Rhinol. 2022 Mar;12(3):286–292. PubMed PMID: 34569176; PubMed Central PMCID: PMCPMC8860864. doi: 10.1002/alr.22890
  • Wang YZ, Fan H, Ji Y, et al. Olig2 regulates terminal differentiation and maturation of peripheral olfactory sensory neurons. Cell Mol Life Sci. 2020 Sep;77(18):3597–3609. PubMed PMID: 31758234; PubMed Central PMCID: PMCPMC7242138. doi: 10.1007/s00018-019-03385-x
  • Liang F. Sustentacular Cell enwrapment of olfactory receptor neuronal dendrites: an update. Genes (Basel). 2020 Apr 30;11(5):493. PubMed PMID: 32365880; PubMed Central PMCID: PMCPMC7291085. doi: 10.3390/genes11050493
  • Khan M, Yoo SJ, Clijsters M, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021 Nov 24;184(24):5932–5949 e15. PubMed PMID: 34798069; PubMed Central PMCID: PMCPMC8564600. doi: 10.1016/j.cell.2021.10.027
  • Genovese F, Tizzano M, Matsunami H. Microvillous cells in the olfactory epithelium express elements of the solitary chemosensory cell transduction signaling cascade. PLoS One. 2018;13(9):e0202754. PubMed PMID: 30212469; PubMed Central PMCID: PMCPMC6136699. doi: 10.1371/journal.pone.0202754
  • Gupta K, Mohanty SK, Mittal A, et al. The Cellular basis of loss of smell in 2019-nCov-infected individuals. Brief Bioinform. 2021 Mar 22;22(2):873–881. PubMed PMID: 32810867; PubMed Central PMCID: PMCPMC7462334. doi: 10.1093/bib/bbaa168
  • Finlay JB, Brann DH, Abi Hachem R, et al. Persistent post-COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci Transl Med. 2022 Dec 21;14(676):eadd0484. PubMed PMID: 36542694. doi: 10.1126/scitranslmed.add0484
  • Van Crombruggen K, Zhang N, Gevaert P, et al. Pathogenesis of chronic rhinosinusitis: inflammation. J Allergy Clin Immunol. 2011 Oct;128(4):728–732. PubMed PMID: 21868076. doi: 10.1016/j.jaci.2011.07.049
  • Yee KK, Pribitkin EA, Cowart BJ, et al. Neuropathology of the olfactory mucosa in chronic rhinosinusitis. Am J Rhinol Allergy. 2010 Mar;24(2):110–120. PubMed PMID: 20021743; PubMed Central PMCID: PMCPMC5903554. doi: 10.2500/ajra.2010.24.3435
  • Rouyar A, Classe M, Gorski R, et al. Type 2/Th2-driven inflammation impairs olfactory sensory neurogenesis in mouse chronic rhinosinusitis model. Allergy. 2019 Mar;74(3):549–559. PubMed PMID: 29987849; PubMed Central PMCID: PMCPMC6590422. doi: 10.1111/all.13559
  • Lavin J, Min JY, Lidder AK, et al. Superior turbinate eosinophilia correlates with olfactory deficit in chronic rhinosinusitis patients. Laryngoscope. 2017 Oct;127(10):2210–2218. PubMed PMID: 28322448; PubMed Central PMCID: PMCPMC5607065. doi: 10.1002/lary.26555
  • Chen M, Reed RR, Lane AP. Chronic inflammation directs an olfactory stem cell functional switch from neuroregeneration to immune defense. Cell Stem Cell. 2019 Oct 3;25(4):501–513 e5. PubMed PMID: 31523027; PubMed Central PMCID: PMCPMC6778045. doi: 10.1016/j.stem.2019.08.011
  • Saraswathula A, Liu MM, Kulaga H, et al. Chronic interleukin-13 expression in mouse olfactory mucosa results in regional aneuronal epithelium. Int Forum Allergy Rhinol. 2022 Aug 11;13(3):230–241. PubMed PMID: 35950767. doi: 10.1002/alr.23073
  • Bryche B, Dewaele A, Saint-Albin A, et al. IL-17c is involved in olfactory mucosa responses to Poly(I: C) mimicking virus presence. Brain Behav Immun. 2019 Jul;79:274–283. PubMed PMID: 30776474. doi: 10.1016/j.bbi.2019.02.012
  • Borders AS, Getchell ML, Etscheidt JT, et al. Macrophage depletion in the murine olfactory epithelium leads to increased neuronal death and decreased neurogenesis. J Comp Neurol. 2007 Mar 10;501(2):206–218. PubMed PMID: 17226772. doi: 10.1002/cne.21252
  • Ponikau JU, Sherris DA, Kephart GM, et al. Features of airway remodeling and eosinophilic inflammation in chronic rhinosinusitis: is the histopathology similar to asthma? J Allergy Clin Immunol. 2003 Nov;112(5):877–882. PubMed PMID: 14610473. doi: 10.1016/j.jaci.2003.08.009
  • Chen M, Shen W, Rowan NR, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J. 2020 Sep;56(3):2001948. PubMed PMID: 32817004; PubMed Central PMCID: PMCPMC7439429 Shen has nothing to disclose. Conflict of interest: N.R. Rowan has nothing to disclose. Conflict of interest: H. Kulaga has nothing to disclose. Conflict of interest: A. Hillel has nothing to disclose. Conflict of interest: M. Ramanathan Jr has nothing to disclose. Conflict of interest: A.P. Lane has nothing to disclose. doi: 10.1183/13993003.01948-2020
  • Tu Y, Liu J, Li T, et al. Mucus composition abnormalities in sinonasal mucosa of chronic rhinosinusitis with and without nasal polyps. Inflammation. 2021 Oct;44(5):1937–1948. PubMed PMID: 33999330. doi: 10.1007/s10753-021-01471-6
  • Chess A, Simon I, Cedar H, et al. Allelic inactivation regulates olfactory receptor gene expression. Cell. 1994 Sep 9;78(5):823–834. PubMed PMID: 8087849. doi: 10.1016/s0092-8674(94)90562-2
  • Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991 Apr 5;65(1):175–187. PubMed PMID: 1840504. doi: 10.1016/0092-8674(91)90418-x
  • Kurahashi T, Yau KW. Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature. 1993 May 6;363(6424):71–74. PubMed PMID: 7683113. doi: 10.1038/363071a0
  • Touhara K. Odor discrimination by G protein-coupled olfactory receptors. Microsc Res Tech. 2002 Aug 1;58(3):135–141. PubMed PMID: 12203691: doi: 10.1002/jemt.10131
  • Hasegawa-Ishii S, Shimada A, Imamura F. Lipopolysaccharide-initiated persistent rhinitis causes gliosis and synaptic loss in the olfactory bulb. Sci Rep. 2017 Sep 14;7(1):11605. PubMed PMID: 28912588; PubMed Central PMCID: PMCPMC5599676. doi: 10.1038/s41598-017-10229-w
  • Holbrook EH, Leopold DA, Schwob JE. Abnormalities of axon growth in human olfactory mucosa. Laryngoscope. 2005 Dec;115(12):2144–2154. PubMed PMID: 16369158. doi: 10.1097/01.MLG.0000181493.83661.CE
  • Ge Y, Tsukatani T, Nishimura T, et al. Cell death of olfactory receptor neurons in a rat with nasosinusitis infected artificially with Staphylococcus. Chem Senses. 2002 Jul;27(6):521–527. PubMed PMID: 12142328. doi: 10.1093/chemse/27.6.521
  • Verma AK, Zheng J, Meyerholz DK, et al. SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways. JCI Insight. 2022 Dec 22;7(24). PubMed PMID: 36378534; PubMed Central PMCID: PMCPMC9869979. doi: 10.1172/jci.insight.160277
  • Bryche B, St Albin A, Murri S, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun. 2020 Oct;89:579–586. PubMed PMID: 32629042; PubMed Central PMCID: PMCPMC7332942. doi: 10.1016/j.bbi.2020.06.032
  • Shahbaz MA, De Bernardi F, Alatalo A, et al. Mechanistic understanding of the olfactory neuroepithelium involvement leading to short-term anosmia in COVID-19 using the adverse outcome pathway framework. Cells. 2022 Sep 27;11(19):3027. PubMed PMID: 36230989; PubMed Central PMCID: PMCPMC9563945. doi: 10.3390/cells11193027
  • Lee SH, Lim HH, Lee HM, et al. Olfactory mucosal findings in patients with persistent anosmia after endoscopic sinus surgery. Ann Otol Rhinol Laryngol. 2000 Aug;109(8 Pt 1):720–725. PubMed PMID: 10961803. doi: 10.1177/000348940010900804
  • Victores AJ, Chen M, Smith A, et al. Olfactory loss in chronic rhinosinusitis is associated with neuronal activation of c-Jun N-terminal kinase. Int Forum Allergy Rhinol. 2018 Mar;8(3):415–420. PubMed PMID: 29193850; PubMed Central PMCID: PMCPMC5842118. doi: 10.1002/alr.22053
  • Suzuki Y, Farbman AI. Tumor necrosis factor-alpha-induced apoptosis in olfactory epithelium in vitro: possible roles of caspase 1 (ICE), caspase 2 (ICH-1), and caspase 3 (CPP32). Exp Neurol. 2000 Sep;165(1):35–45. PubMed PMID: 10964483. doi: 10.1006/exnr.2000.7465
  • Kanaya K, Kondo K, Suzukawa K, et al. Innate immune responses and neuroepithelial degeneration and regeneration in the mouse olfactory mucosa induced by intranasal administration of Poly(I: C). Cell Tissue Res. 2014 Jul;357(1):279–299. PubMed PMID: 24744264; PubMed Central PMCID: PMCPMC4077259. doi: 10.1007/s00441-014-1848-2
  • Islam Z, Amuzie CJ, Harkema JR, et al. Neurotoxicity and inflammation in the nasal airways of mice exposed to the macrocyclic trichothecene mycotoxin roridin a: kinetics and potentiation by bacterial lipopolysaccharide coexposure. Toxicol Sci. 2007 Aug;98(2):526–541. PubMed PMID: 17483119. doi: 10.1093/toxsci/kfm102
  • Corps KN, Islam Z, Pestka JJ, et al. Neurotoxic, inflammatory, and mucosecretory responses in the nasal airways of mice repeatedly exposed to the macrocyclic trichothecene mycotoxin roridin A: dose-response and persistence of injury. Toxicol Pathol. 2010 Apr;38(3):429–451. PubMed PMID: 20430879. doi: 10.1177/0192623310364026
  • Selvaraj S, Liu K, Robinson AM, et al. In vivo determination of mouse olfactory mucus cation concentrations in normal and inflammatory states. PLoS One. 2012;7(7):e39600. PubMed PMID: 22911687; PubMed Central PMCID: PMCPMC3401282. doi: 10.1371/journal.pone.0039600
  • Lane AP, Turner J, May L, et al. A genetic model of chronic rhinosinusitis-associated olfactory inflammation reveals reversible functional impairment and dramatic neuroepithelial reorganization. J Neurosci. 2010 Feb 10;30(6):2324–2329. PubMed PMID: 20147558; PubMed Central PMCID: PMCPMC2957830. doi: 10.1523/JNEUROSCI.4507-09.2010
  • Kato A, Touhara K. Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization. Cell Mol Life Sci. 2009 Dec;66(23):3743–3753. PubMed PMID: 19652915. doi: 10.1007/s00018-009-0111-6
  • Leung CT, Coulombe PA, Reed RR. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci. 2007 Jun;10(6):720–726. PubMed PMID: 17468753. doi: 10.1038/nn1882
  • Schnittke N, Herrick DB, Lin B, et al. Transcription factor p63 controls the reserve status but not the stemness of horizontal basal cells in the olfactory epithelium. Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):E5068–77. PubMed PMID: 26305958; PubMed Central PMCID: PMCPMC4568657. doi: 10.1073/pnas.1512272112
  • Herrick DB, Lin B, Peterson J, et al. Notch1 maintains dormancy of olfactory horizontal basal cells, a reserve neural stem cell. Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5589–E5598. PubMed PMID: 28637720; PubMed Central PMCID: PMCPMC5514720. doi: 10.1073/pnas.1701333114
  • Fletcher RB, Das D, Gadye L, et al. Deconstructing olfactory stem cell trajectories at single-cell resolution. Cell Stem Cell. 2017 Jun 1;20(6):817–830 e8. PubMed PMID: 28506465; PubMed Central PMCID: PMCPMC5484588. doi: 10.1016/j.stem.2017.04.003
  • Pozharskaya T, Liang J, Lane AP. Regulation of inflammation-associated olfactory neuronal death and regeneration by the type II tumor necrosis factor receptor. Int Forum Allergy Rhinol. 2013 Sep;3(9):740–747. PubMed PMID: 23733314; PubMed Central PMCID: PMCPMC3784625. doi: 10.1002/alr.21187
  • Turner JH, May L, Reed RR, et al. Reversible loss of neuronal marker protein expression in a transgenic mouse model for sinusitis-associated olfactory dysfunction. Am J Rhinol Allergy. 2010 May;24(3):192–196. PubMed PMID: 20537285; PubMed Central PMCID: PMCPMC3021955. doi: 10.2500/ajra.2010.24.3460
  • Strotmann J, Breer H. Internalization of odorant-binding proteins into the mouse olfactory epithelium. Histochem Cell Biol. 2011 Sep;136(3):357–369. PubMed PMID: 21818577. doi: 10.1007/s00418-011-0850-y
  • Getchell ML, Getchell TV. Fine structural aspects of secretion and extrinsic innervation in the olfactory mucosa. Microsc Res Tech. 1992 Oct 15;23(2):111–127. PubMed PMID: 1421551. doi: 10.1002/jemt.1070230203
  • Bryche B, Baly C, Meunier N. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res. 2021 Jun;384(3):589–605. PubMed PMID: 33961125; PubMed Central PMCID: PMCPMC8102665. doi: 10.1007/s00441-021-03467-y
  • Saraswathula A, Liu MM, Kulaga H, et al. Chronic interleukin-13 expression in mouse olfactory mucosa results in regional aneuronal epithelium. Int Forum Allergy Rhinol. 2023 Mar;13(3):230–241. PubMed PMID: 35950767; PubMed Central PMCID: PMCPMC9918612. doi: 10.1002/alr.23073
  • Bilinska K, Jakubowska P, Von Bartheld CS, et al. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. 2020 Jun 3;11(11):1555–1562. PubMed PMID: 32379417; PubMed Central PMCID: PMCPMC7241737. doi: 10.1021/acschemneuro.0c00210
  • Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020 Jul 31;6(31): PubMed PMID: 32937591. doi: 10.1126/sciadv.abc5801
  • Leung JY, Chapman JA, Harris JA, et al. Olfactory ensheathing cells are attracted to, and can endocytose, bacteria. Cell Mol Life Sci. 2008 Sep;65(17):2732–2739. PubMed PMID: 18604629. doi: 10.1007/s00018-008-8184-1
  • Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008 May;42(2):145–151. PubMed PMID: 18304834. doi: 10.1016/j.cyto.2008.01.006
  • Vincent AJ, Choi-Lundberg DL, Harris JA, et al. Bacteria and PAMPs activate nuclear factor kappaB and Gro production in a subset of olfactory ensheathing cells and astrocytes but not in Schwann cells. Glia. 2007 Jul;55(9):905–916. PubMed PMID: 17427933. doi: 10.1002/glia.20512
  • Li Y, Field PM, Raisman G. Olfactory ensheathing cells and olfactory nerve fibroblasts maintain continuous open channels for regrowth of olfactory nerve fibres. Glia. 2005 Nov 15;52(3):245–251. PubMed PMID: 15968636. doi: 10.1002/glia.20241
  • He M, Xiang Z, Xu L, et al. Lipopolysaccharide induces human olfactory ensheathing glial apoptosis by promoting mitochondrial dysfunction and activating the JNK-Bnip3-Bax pathway. Cell Stress Chaperones. 2019 Jan;24(1):91–104. PubMed PMID: 30374881; PubMed Central PMCID: PMCPMC6363633. doi: 10.1007/s12192-018-0945-7
  • Harris JA, West AK, Chuah MI. Olfactory ensheathing cells: nitric oxide production and innate immunity. Glia. 2009 Dec;57(16):1848–1857. PubMed PMID: 19455713. doi: 10.1002/glia.20899
  • Sulz L, Astorga G, Bellette B, et al. Nitric oxide regulates neurogenesis in adult olfactory epithelium in vitro. Nitric Oxide. 2009 Jun;20(4):238–252. PubMed PMID: 19371594. doi: 10.1016/j.niox.2009.01.004
  • Hedrich HJ. The Laboratory Mouse,pp.845. New York(NY): Academic Press; 2012.
  • Shirai T, Takase D, Yokoyama J, et al. Functions of human olfactory mucus and age-dependent changes. Sci Rep. 2023 Jan 18;13(1): 971. PubMed PMID: 36653421; PubMed Central PMCID: PMCPMC9846672 patent (P6588715) related to human odorant receptors for p-cresol and has applied for patents related to methods for the administration of water to the nasal mucus and for vapor-stimulation of ORs. There are no products currently in development or marketed to declare. This work was supported by Kao Corporation, who provided salaries for the authors. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. doi: 10.1038/s41598-023-27937-1
  • Tian J, Pinto JM, Cui X, et al. Sendai virus induces persistent olfactory dysfunction in a murine model of PVOD via effects on apoptosis, cell proliferation, and response to odorants. PLoS One. 2016;11(7):e0159033. PubMed PMID: 27428110; PubMed Central PMCID: PMCPMC4948916. doi: 10.1371/journal.pone.0159033
  • Doty RL, Shaman P, Kimmelman CP, et al. University of pennsylvania smell identification test: a rapid quantitative olfactory function test for the clinic. Laryngoscope. 1984 Feb;94(2 Pt 1):176–178. PubMed PMID: 6694486. doi: 10.1288/00005537-198402000-00004
  • Hummel T, Sekinger B, Wolf SR, et al. ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses. 1997 Feb;22(1):39–52. PubMed PMID: 9056084. doi: 10.1093/chemse/22.1.39
  • Feng G, Zhuang Y, Yao F, et al. Development of the Chinese smell identification test. Chem Senses. 2019 Mar 11;44(3):189–195. PubMed PMID: 30715263. doi: 10.1093/chemse/bjz006
  • Guo Y, Wu D, Sun Z, et al. Prognostic value of olfactory evoked potentials in patients with post-infectious olfactory dysfunction. Eur Arch Otorhinolaryngol. 2021 Oct;278(10):3839–3846. PubMed PMID: 33644842. doi: 10.1007/s00405-021-06683-y
  • Nguyen DT, Rumeau C, Gallet P, et al. Olfactory exploration: State of the art. Eur Ann Otorhinolaryngol Head Neck Dis. 2016 Apr;133(2):113–118. PubMed PMID: 26384780. doi: 10.1016/j.anorl.2015.08.038
  • Arpaia P, Cataldo A, Criscuolo S, et al. Assessment and Scientific progresses in the analysis of olfactory evoked potentials. Bioengineering (Basel). 2022 Jun 12;9(6):252. PubMed PMID: 35735495; PubMed Central PMCID: PMCPMC9219708. doi: 10.3390/bioengineering9060252
  • Celik C, Guler H, Pehlivan M. Medicolegal aspect of loss of smell and olfactory event-related potentials. PubMed PMID: 36320625; PubMed Central PMCID: PMCPMC9610318 Egypt J Forensic Sci. 2022;12(1):47. doi: 10.1186/s41935-022-00306-1
  • Lotsch J, Hummel T. The clinical significance of electrophysiological measures of olfactory function. Behav Brain Res. 2006 Jun 3;170(1):78–83. PubMed PMID: 16563529. doi: 10.1016/j.bbr.2006.02.013
  • Limphaibool N, Iwanowski P, Kozubski W, et al. Subjective and objective assessments of post-traumatic olfactory dysfunction. Front Neurol . 2020;11:970. [ PubMed PMID: 32982956; PubMed Central PMCID: PMCPMC7479332]. doi: 10.3389/fneur.2020.00970
  • Rombaux P, Bertrand B, Keller T, et al. Clinical significance of olfactory event-related potentials related to orthonasal and retronasal olfactory testing. Laryngoscope. 2007 Jun;117(6):1096–1101. PubMed PMID: 17460578. doi: 10.1097/MLG.0b013e31804d1d0d
  • Bramerson A, Millqvist E, Ydse B, et al. Event-related potentials in patients with olfactory loss. Acta Otolaryngol. 2008 Oct;128(10):1126–1131. PubMed PMID: 18607946. doi: 10.1080/00016480801891702
  • Chen X, Xia Z, Storm DR. Electroolfactogram (EOG) recording in the mouse main olfactory epithelium. Bio Protoc. 2013 Jun 5;3(11). PubMed PMID: 27430002; PubMed Central PMCID: PMCPMC4943757. doi: 10.21769/bioprotoc.789
  • Coppola DM, Waggener CT, Radwani SM, et al. An electroolfactogram study of odor response patterns from the mouse olfactory epithelium with reference to receptor zones and odor sorptiveness. J Neurophysiol. 2013 Apr;109(8):2179–2191. PubMed PMID: 23343905. doi: 10.1152/jn.00769.2012
  • Wang L, Hari C, Chen L, et al. A new non-invasive method for recording the electro-olfactogram using external electrodes. Clin Neurophysiol. 2004 Jul;115(7):1631–1640. PubMed PMID: 15203064. doi: 10.1016/j.clinph.2004.02.010
  • Tsybikov NN, Egorova EV, Kuznik BI, et al. Neuron-specific enolase in nasal secretions as a novel biomarker of olfactory dysfunction in chronic rhinosinusitis. Am J Rhinol Allergy. 2016 Jan;30(1):65–69. PubMed PMID: 26867533. doi: 10.2500/ajra.2016.30.4264
  • Han X, Wu D, Sun Z, et al. Type 1/type 2 inflammatory cytokines correlate with olfactory function in patients with chronic rhinosinusitis. Am J Otolaryngol. 2020 Sep;41(5):102587. PubMed PMID: 32516657. doi: 10.1016/j.amjoto.2020.102587
  • Liu Z, Hong J, Huang X, et al. Olfactory cleft mucus galectin-10 predicts olfactory loss in chronic rhinosinusitis. Annals Of Allergy, Asthma & Immunology. 2022 Jul 21;130(3):317–324.e1. PubMed PMID: 35870756. doi: 10.1016/j.anai.2022.07.014
  • Soler ZM, Yoo F, Schlosser RJ, et al. Correlation of mucus inflammatory proteins and olfaction in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2020 Mar;10(3):343–355. PubMed PMID: 31856395; PubMed Central PMCID: PMCPMC7145735. doi: 10.1002/alr.22499
  • Schlosser RJ, Mulligan JK, Hyer JM, et al. Mucous cytokine levels in chronic rhinosinusitis-associated olfactory loss. JAMA Otolaryngology–Head & Neck Surg. 2016 Aug 1;142(8):731–737. PubMed PMID: 27228459; PubMed Central PMCID: PMCPMC5751717. doi: 10.1001/jamaoto.2016.0927
  • Papadakis CE, Chimona TS, Chaidas K, et al. Effect of oral steroids on olfactory function in chronic rhinosinusitis with nasal polyps. Eur Ann Otorhinolaryngol Head Neck Dis. 2021 Oct;138(5):343–348. PubMed PMID: 33676882. doi: 10.1016/j.anorl.2020.06.028
  • Reychler G, Colbrant C, Huart C, et al. Effect of three-drug delivery modalities on olfactory function in chronic sinusitis. Laryngoscope. 2015 Mar;125(3):549–555. PubMed PMID: 25224684. doi: 10.1002/lary.24937
  • Bardaranfar MH, Ranjbar Z, Dadgarnia MH, et al. The effect of an absorbable gelatin dressing impregnated with triamcinolone within the olfactory cleft on polypoid rhinosinusitis smell disorders. Am J Rhinol Allergy. 2014 Mar;28(2):172–175. PubMed PMID: 24717956. doi: 10.2500/ajra.2014.28.4016
  • Chang SY, Glezer I. The balance between efficient anti-inflammatory treatment and neuronal regeneration in the olfactory epithelium. Neural Regen Res. 2018 Oct;13(10):1711–1714. PubMed PMID: 30136681; PubMed Central PMCID: PMCPMC6128054. doi: 10.4103/1673-5374.238605
  • Wang JJ, Chen J, Doty RL. Impact of antibiotics on smell dysfunction. World J Otorhinolaryngol Head Neck Surg. 2018 Mar;4(1):33–38. PubMed PMID: 30035259; PubMed Central PMCID: PMCPMC6051305. doi: 10.1016/j.wjorl.2018.03.002
  • Rimmer J, Fokkens W, Chong LY, et al. Surgical versus medical interventions for chronic rhinosinusitis with nasal polyps. Cochrane Database Syst Rev. 2014;12: CD006991 PubMed PMID: 25437000.
  • Zi XX, Zhi LL, Jin P, et al. Olfactory change pattern after endoscopic sinus surgery in chronic rhinosinusitis with olfactory dysfunction. J Coll Physicians Surg Pak. 2018 Aug;28(8):612–617. PubMed PMID: 30060790. doi: 10.29271/jcpsp.2018.08.612
  • AlBader A, Levine CG, Casiano RR. Does endoscopic sinus surgery improve olfaction in nasal polyposis? Laryngoscope. 2017 Oct;127(10):2203–2204. PubMed PMID: 28573646. doi: 10.1002/lary.26689
  • Kuperan AB, Lieberman SM, Jourdy DN, et al. The effect of endoscopic olfactory cleft polyp removal on olfaction. Am J Rhinol Allergy. 2015 Jul;29(4):309–313. PubMed PMID: 26163252. doi: 10.2500/ajra.2015.29.4191
  • Gupta D, Gulati A, Singh I, et al. Impact of endoscopic sinus surgery on olfaction and use of alternative components in odor threshold measurement. Am J Rhinol Allergy. 2015 Jul;29(4):e117–20. PubMed PMID: 26163240. doi: 10.2500/ajra.2015.29.4207
  • Musleh A, Al-Zomia AS, Shahrani IM, et al. Olfactory change pattern after endoscopic sinus surgery in chronic rhinosinusitis patients. Cureus. 2022 Apr;14(4):e24597. PubMed PMID: 35651459; PubMed Central PMCID: PMCPMC9138177. doi: 10.7759/cureus.24597
  • Bleier BS. Topical glucocorticoid treatment for chronic rhinosinusitis in the biologic era. Int Forum Allergy Rhinol. 2020 Aug;10(8):933–935. PubMed PMID: 32583619. doi: 10.1002/alr.22631
  • Pauwels B, Jonstam K, Bachert C. Emerging biologics for the treatment of chronic rhinosinusitis. Expert Rev Clin Immunol. 2015 Mar;11(3):349–361. PubMed PMID: 25651905. doi: 10.1586/1744666X.2015.1010517
  • Mullol J, Laidlaw TM, Bachert C, et al. Efficacy and safety of dupilumab in patients with uncontrolled severe chronic rhinosinusitis with nasal polyps and a clinical diagnosis of NSAID-ERD: Results from two randomized placebo-controlled phase 3 trials. Allergy. 2022 Apr;77(4):1231–1244. PubMed PMID: 34459002; PubMed Central PMCID: PMCPMC9292324. doi: 10.1111/all.15067
  • Bachert C, Han JK, Desrosiers M, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019 Nov 2;394(10209):1638–1650. PubMed PMID: 31543428. doi: 10.1016/S0140-6736(19)31881-1
  • Gevaert P, Omachi TA, Corren J, et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J Allergy Clin Immunol. 2020 Sep;146(3):595–605. PubMed PMID: 32524991. doi: 10.1016/j.jaci.2020.05.032
  • Han JK, Bachert C, Fokkens W, et al. Mepolizumab for chronic rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med. 2021 Oct;9(10):1141–1153. PubMed PMID: 33872587. doi: 10.1016/S2213-2600(21)00097-7
  • Bachert C, Han JK, Desrosiers MY, et al. Efficacy and safety of benralizumab in chronic rhinosinusitis with nasal polyps: A randomized, placebo-controlled trial. J Allergy Clin Immunol. 2022 Apr;149(4):1309–1317 e12. PubMed PMID: 34599979. doi: 10.1016/j.jaci.2021.08.030
  • Oykhman P, Paramo FA, Bousquet J, et al. Comparative efficacy and safety of monoclonal antibodies and aspirin desensitization for chronic rhinosinusitis with nasal polyposis: A systematic review and network meta-analysis. J Allergy Clin Immunol. 2022 Apr;149(4):1286–1295. PubMed PMID: 34543652. doi: 10.1016/j.jaci.2021.09.009
  • Lou H, Wang C, Zhang L. Endotype-driven precision medicine in chronic rhinosinusitis. Expert Rev Clin Immunol. 2019 Nov;15(11):1171–1183. PubMed PMID: 31600458. doi: 10.1080/1744666X.2020.1679626
  • Kurtenbach S, Goss GM, Goncalves S, et al. Cell-based therapy restores olfactory function in an inducible model of hyposmia. Stem Cell Rep. 2019 Jun 11;12(6):1354–1365. PubMed PMID: 31155504; PubMed Central PMCID: PMCPMC6565856. doi: 10.1016/j.stemcr.2019.05.001
  • Jia C, Oliver J, Gilmer D, et al. Inhibition of focal adhesion kinase increases adult olfactory stem cell self-renewal and neuroregeneration through ciliary neurotrophic factor. Stem Cell Res. 2020 Dec;49:102061. PubMed PMID: 33130470; PubMed Central PMCID: PMCPMC7903807. doi: 10.1016/j.scr.2020.102061
  • Huang TW, Li ST, Wang YH, et al. Regulation of chitosan-mediated differentiation of human olfactory receptor neurons by insulin-like growth factor binding protein-2. Acta Biomater. 2019 Oct 1 PubMed PMID: 31421230;97:399–408. doi: 10.1016/j.actbio.2019.08.022
  • Zhang J, Feng Y, Liu W, et al. Effect of early olfactory training on olfactory recovery after nasal endoscopy in patients with chronic rhinosinusitis and olfactory impairment. Am J Transl Res. 2022;14(4):2600–2608. PubMed PMID: 35559418; PubMed Central PMCID: PMCPMC9091090.
  • Han B, Kikuta S, Kamogashira T, et al. Sleep deprivation induces delayed regeneration of olfactory sensory neurons following injury. Front Neurosci . 2022;16:1029279. [ PubMed PMID: 36532269; PubMed Central PMCID: PMCPMC9751432]. doi: 10.3389/fnins.2022.1029279

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.