193
Views
0
CrossRef citations to date
0
Altmetric
Review

Overcoming the challenges of primary resistance and relapse after CAR-T cell therapy

, , , &
Pages 745-763 | Received 17 Dec 2023, Accepted 26 Apr 2024, Published online: 14 May 2024

References

  • Mitra A, Barua A, Huang L, et al. From bench to bedside: the history and progress of CAR T cell therapy. Front Immunol. 2023;14:1188049. doi: 10.3389/fimmu.2023.1188049
  • June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73. doi: 10.1056/NEJMra1706169
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–2544. doi: 10.1056/NEJMoa1707447
  • Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol. 2023;20(6):359–371. doi: 10.1038/s41571-023-00754-1
  • Giorgioni L, Ambrosone A, Cometa MF, et al. CAR-T state of the art and future challenges, a regulatory perspective. Int J Mol Sci. 2023;24(14):11803. doi: 10.3390/ijms241411803
  • Hwu P, Yang JC, Cowherd R, et al. In vivo antitumor activity of T cells redirected with chimeric antibody/T-cell receptor genes. Cancer Res. 1995;55(15):3369–3373.
  • Moritz D, Wels W, Mattern J, et al. Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells. Proc Natl Acad Sci U S A. 1994;91(10):4318–4322. doi: 10.1073/pnas.91.10.4318
  • Till BG, Jensen MC, Wang J, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112(6):2261–2271. doi: 10.1182/blood-2007-12-128843
  • Park JR, Digiusto DL, Slovak M, et al. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007;15(4):825–833. doi: 10.1038/sj.mt.6300104
  • Kershaw MH, Westwood JA, Parker LL, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006;12(20 Pt 1):6106–6115. doi: 10.1158/1078-0432.CCR-06-1183
  • Lamers CH, Sleijfer S, Vulto AG, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006;24(13):e20–22. doi: 10.1200/JCO.2006.05.9964
  • Krause A, Guo HF, Latouche JB, et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med. 1998;188(4):619–626. doi: 10.1084/jem.188.4.619
  • Imai C, Mihara K, Andreansky M, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18(4):676–684. doi: 10.1038/sj.leu.2403302
  • Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–448. doi: 10.1056/NEJMoa1709866
  • Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. doi: 10.1056/NEJMoa1804980
  • Fowler NH, Dickinson M, Dreyling M, et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial. Nat Med. 2022;28(2):325–332. doi: 10.1038/s41591-021-01622-0
  • Laetsch TW, Maude SL, Rives S, et al. Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. J Clin Oncol. 2023;41(9):1664–1669. doi: 10.1200/JCO.22.00642
  • Schuster SJ, Tam CS, Borchmann P, et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021;22(10):1403–1415. doi: 10.1016/S1470-2045(21)00375-2
  • Locke FL, Miklos DB, Jacobson CA, et al. Axicabtagene Ciloleucel as second-line therapy for large B-Cell lymphoma. N Engl J Med. 2022;386(7):640–654. doi: 10.1056/NEJMoa2116133
  • Neelapu SS, Jacobson CA, Ghobadi A, et al. Five-year follow-up of ZUMA-1 supports the curative potential of axicabtagene ciloleucel in refractory large B-cell lymphoma. Blood. 2023;141(19):2307–2315. doi: 10.1182/blood.2022018893
  • Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331–1342. doi: 10.1056/NEJMoa1914347
  • Wang M, Munoz J, Goy A, et al. Three-year follow-up of KTE-X19 in patients with relapsed/refractory mantle cell lymphoma, including high-risk subgroups, in the ZUMA-2 study. J Clin Oncol. 2023;41(3):555–567. doi: 10.1200/JCO.21.02370
  • Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–852. doi: 10.1016/S0140-6736(20)31366-0
  • Abramson JS, Palomba ML, Gordon LI, et al. Two-year follow-up of lisocabtagene maraleucel in relapsed or refractory large B-cell lymphoma in TRANSCEND NHL 001. Blood. 2023;143(5):404–416. doi: 10.1182/blood.2023020854
  • Munshi NC, Anderson LD Jr., Shah N, et al. Idecabtagene Vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705–716. doi: 10.1056/NEJMoa2024850
  • Rodriguez-Otero P, Ailawadhi S, Arnulf B, et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N Engl J Med. 2023;388(11):1002–1014. doi: 10.1056/NEJMoa2213614
  • Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 2021;398(10297):314–324. doi: 10.1016/S0140-6736(21)00933-8
  • Munshi N, Martin T, Usmani SZ, et al. S202: cartitude-1 final results: phase 1B/2 study of ciltacabtagene autoleucel in heavily pretreated patients with relapsed/refractory multiple myeloma. Hemasphere. 2023;7(Suppl):e6102468. doi: 10.1097/01.HS9.0000967720.61024.68
  • Bersenev A. CAR-T cell manufacturing: time to put it in gear. Transfusion. 2017;57(5):1104–1106. doi: 10.1111/trf.14110
  • Jo T, Yoshihara S, Hada A, et al. A clinically applicable prediction model to improve T cell collection in chimeric antigen receptor T cell therapy. Transplant Cell Ther. 2022;28(7):e365 361–e365 367. doi: 10.1016/j.jtct.2022.04.013
  • Huang X, Gan GPL, Chan EHL, et al. A proposed predictive mathematical model for efficient T-cell collection by leukapheresis for manufacturing chimeric antigen receptor T cells. Haematologica. 2023;108(11):3131–3134. doi: 10.3324/haematol.2022.282350
  • O’Reilly MA, Malhi A, Cheok KPL, et al. A novel predictive algorithm to personalize autologous T-cell harvest for chimeric antigen receptor T-cell manufacture. Cytotherapy. 2023;25(3):323–329. doi: 10.1016/j.jcyt.2022.10.012
  • Allen ES, Stroncek DF, Ren J, et al. Autologous lymphapheresis for the production of chimeric antigen receptor T cells. Transfusion. 2017;57(5):1133–1141. doi: 10.1111/trf.14003
  • Wada F, Jo T, Arai Y, et al. T-cell counts in peripheral blood at leukapheresis predict responses to subsequent CAR-T cell therapy. Sci Rep. 2022;12(1):18696. doi: 10.1038/s41598-022-23589-9
  • Stroncek DF, Lee DW, Ren J, et al. Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells. J Transl Med. 2017;15(1):59. doi: 10.1186/s12967-017-1160-5
  • Shah NN, Highfill SL, Shalabi H, et al. CD4/CD8 T-Cell selection affects chimeric antigen receptor (CAR) T-Cell potency and toxicity: updated results from a phase I anti-CD22 CAR T-cell trial. J Clin Oncol. 2020;38(17):1938–1950. doi: 10.1200/JCO.19.03279
  • Jo T, Yoshihara S, Okuyama Y, et al. Risk factors for CAR-T cell manufacturing failure among DLBCL patients: a nationwide survey in Japan. Br J Haematol. 2023;202(2):256–266. doi: 10.1111/bjh.18831
  • Ayuk FA, Berger C, Badbaran A, et al. Axicabtagene ciloleucel in vivo expansion and treatment outcome in aggressive B-cell lymphoma in a real-world setting. Blood Adv. 2021;5(11):2523–2527. doi: 10.1182/bloodadvances.2020003959
  • Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380(18):1726–1737. doi: 10.1056/NEJMoa1817226
  • Finney OC, Brakke HM, Rawlings-Rhea S, et al. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J Clin Invest. 2019;129(5):2123–2132. doi: 10.1172/JCI125423
  • Kawalekar OU, O’Connor RS, Fraietta JA, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity. 2016;44(2):380–390. doi: 10.1016/j.immuni.2016.01.021
  • Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi: 10.1126/scitranslmed.aac5415
  • Turtle CJ, Hanafi LA, Berger C, et al. CD19 CAR-T cells of defined CD4+: CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–2138. doi: 10.1172/JCI85309
  • Lee DH, Cervantes-Contreras F, Lee SY, et al. Improved expansion and function of CAR T cell products from cultures initiated at defined CD4: CD8 ratios. Blood. 2018;132(Supplement 1):3334–3334. doi:10.1182/blood-2018-99-111576
  • Lamure S, Van Laethem F, De Verbizier D, et al. Clinical and product features associated with outcome of DLBCL patients to CD19-targeted CAR T-cell therapy. Cancers (Basel). 2021;13(17):4279. doi: 10.3390/cancers13174279
  • Deng Q, Han G, Puebla-Osorio N, et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat Med. 2020;26(12):1878–1887. doi: 10.1038/s41591-020-1061-7
  • Fraietta JA, Lacey SF, Orlando EJ, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018;24(5):563–571. doi: 10.1038/s41591-018-0010-1
  • Bai Z, Woodhouse S, Zhao Z, et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci Adv. 2022;8(23):eabj2820. doi: 10.1126/sciadv.abj2820
  • Rossi J, Paczkowski P, Shen YW, et al. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood. 2018;132(8):804–814. doi: 10.1182/blood-2018-01-828343
  • Worel N, Grabmeier-Pfistershammer K, Kratzer B, et al. The frequency of differentiated CD3(+)CD27(-)CD28(-) T cells predicts response to CART cell therapy in diffuse large B-cell lymphoma. Front Immunol. 2022;13:1004703. doi: 10.3389/fimmu.2022.1004703
  • Haradhvala NJ, Leick MB, Maurer K, et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat Med. 2022;28(9):1848–1859. doi: 10.1038/s41591-022-01959-0
  • Arcangeli S, Bove C, Mezzanotte C, et al. CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J Clin Invest. 2022;132(12). doi: 10.1172/JCI150807
  • Schultz LM, Czerwinski DK, Levy R, et al. CD81 costimulation skews CAR transduction toward naive T cells. Proc Natl Acad Sci U S A. 2022;119(5). doi: 10.1073/pnas.1910844119
  • Blaeschke F, Stenger D, Kaeuferle T, et al. Induction of a central memory and stem cell memory phenotype in functionally active CD4(+) and CD8(+) CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19(+) acute lymphoblastic leukemia. Cancer Immunol Immun. 2018;67(7):1053–1066. doi: 10.1007/s00262-018-2155-7
  • Verma NK, Wong BHS, Poh ZS, et al. Obstacles for T-lymphocytes in the tumour microenvironment: therapeutic challenges, advances and opportunities beyond immune checkpoint. EBioMedicine. 2022;83:104216. doi: 10.1016/j.ebiom.2022.104216
  • Toor SM, Sasidharan Nair V, Decock J, et al. Immune checkpoints in the tumor microenvironment. Semin Cancer Biol. 2020;65:1–12. doi: 10.1016/j.semcancer.2019.06.021
  • Hirayama AV, Gauthier J, Hay KA, et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood. 2019;133(17):1876–1887. doi: 10.1182/blood-2018-11-887067
  • Mishra AK, Schmidt TM, Martell EB, et al. PD1(+)TIGIT(+)2B4(+)KLRG1(+) cells might underlie T cell dysfunction in patients treated with BCMA-directed chimeric antigen receptor T cell therapy. Transplant Cell Ther. 2024;30(2):191–202. doi: 10.1016/j.jtct.2023.11.014
  • Noemie Leblay RM, Barakat E, McCulloch S, et al. Cite-seq profiling of T cells in multiple myeloma patients undergoing BCMA targeting CAR-T or bites immunotherapy. Blood. 2020;136(Supplement 1):11–12. doi: 10.1182/blood-2020-137650
  • Yan ZX, Li L, Wang W, et al. Clinical efficacy and tumor microenvironment influence in a dose-escalation study of anti-CD19 chimeric antigen receptor T cells in refractory B-Cell Non-Hodgkin’s lymphoma. Clin Cancer Res. 2019;25(23):6995–7003. doi: 10.1158/1078-0432.CCR-19-0101
  • Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166(1):678–689. doi: 10.4049/jimmunol.166.1.678
  • Diaz-Montero CM, Salem ML, Nishimura MI, et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immun. 2009;58(1):49–59. doi: 10.1007/s00262-008-0523-4
  • Jain MD, Zhao H, Wang X, et al. Tumor interferon signaling and suppressive myeloid cells are associated with CAR T-cell failure in large B-cell lymphoma. Blood. 2021;137(19):2621–2633. doi: 10.1182/blood.2020007445
  • Nalawade SA, Shafer P, Bajgain P, et al. Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer. J Immunother Cancer. 2021;9(11):e003237. doi: 10.1136/jitc-2021-003237
  • Long AH, Highfill SL, Cui Y, et al. Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res. 2016;4(10):869–880. doi: 10.1158/2326-6066.CIR-15-0230
  • Martinez M, Moon EK. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 2019;10:128. doi: 10.3389/fimmu.2019.00128
  • Safarzadeh Kozani P, Safarzadeh Kozani P, Ahmadi Najafabadi M, et al. Recent advances in solid tumor CAR-T cell therapy: driving tumor cells from hero to zero? Front Immunol. 2022;13:795164. doi: 10.3389/fimmu.2022.795164
  • Schultz LM, Baggott C, Prabhu S, et al. Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: a pediatric real-world chimeric antigen receptor consortium report. J Clin Oncol. 2022;40(9):945–955. doi: 10.1200/JCO.20.03585
  • Ravich JW, Huang S, Zhou Y, et al. Impact of high disease burden on survival in pediatric patients with B-ALL treated with Tisagenlecleucel. Transplant Cell Ther. 2022;28(2):e73 71–e73 79. doi: 10.1016/j.jtct.2021.11.019
  • Myers RM, Taraseviciute A, Steinberg SM, et al. Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL. J Clin Oncol. 2022;40(9):932–944. doi: 10.1200/JCO.21.01405
  • Park JH, Riviere I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–459. doi: 10.1056/NEJMoa1709919
  • Curran KJ, Margossian SP, Kernan NA, et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood. 2019;134(26):2361–2368. doi: 10.1182/blood.2019001641
  • Deng B, Pan J, Liu Z, et al. Peripheral leukemia burden at time of apheresis negatively affects the clinical efficacy of CART19 in refractory or relapsed B-ALL. Mol Ther Methods Clin Dev. 2021;23:633–643. doi: 10.1016/j.omtm.2021.10.006
  • Frank MJ, Hossain NM, Bukhari A, et al. Monitoring of circulating tumor DNA improves early relapse detection after axicabtagene ciloleucel infusion in large B-Cell lymphoma: results of a prospective multi-institutional trial. J Clin Oncol. 2021;39(27):3034–3043. doi: 10.1200/JCO.21.00377
  • Vercellino L, Di Blasi R, Kanoun S, et al. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Adv. 2020;4(22):5607–5615. doi: 10.1182/bloodadvances.2020003001
  • Locke FL, Rossi JM, Neelapu SS, et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020;4(19):4898–4911. doi: 10.1182/bloodadvances.2020002394
  • Zafar A, Huang CY, Lo M, et al. Intensity of cyclophosphamide-based bridging therapy before chimeric antigen receptor T cell therapy in myeloma. Transplant Cell Ther. 2023;29(8):e504 501–e504 507. doi: 10.1016/j.jtct.2023.05.016
  • Ladbury C, Dandapani S, Hao C, et al. Long-term follow-up of bridging therapies prior to CAR T-Cell therapy for relapsed/refractory large B cell lymphoma. Cancers (Basel). 2023;15(6):1747. doi: 10.3390/cancers15061747
  • Pinnix CC, Gunther JR, Dabaja BS, et al. Bridging therapy prior to axicabtagene ciloleucel for relapsed/refractory large B-cell lymphoma. Blood Adv. 2020;4(13):2871–2883. doi: 10.1182/bloodadvances.2020001837
  • Nastoupil LJ, Jain MD, Feng L, et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-Cell lymphoma: results from the US lymphoma CAR T consortium. J Clin Oncol. 2020;38(27):3119–3128. doi: 10.1200/JCO.19.02104
  • Shouval R, Alarcon Tomas A, Fein JA, et al. Impact of TP53 genomic alterations in large B-Cell lymphoma treated with CD19-chimeric antigen receptor T-Cell therapy. J Clin Oncol. 2022;40(4):369–381. doi: 10.1200/JCO.21.02143
  • Moskop A, Pommert L, Baggott C, et al. Real-world use of tisagenlecleucel in infant acute lymphoblastic leukemia. Blood Adv. 2022;6(14):4251–4255. doi: 10.1182/bloodadvances.2021006393
  • Leahy AB, Devine KJ, Li Y, et al. Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CAR T-cell therapy. Blood. 2022;139(14):2173–2185. doi: 10.1182/blood.2021012727.
  • Gagelmann N, Ayuk FA, Klyuchnikov E, et al. Impact of high-risk disease on the efficacy of chimeric antigen receptor T-cell therapy for multiple myeloma: a meta-analysis of 723 patients. Haematologica. 2023;108(10):2799–2802. doi: 10.3324/haematol.2022.282510
  • Masih KE, Gardner RA, Chou HC, et al. A stem cell epigenome is associated with primary nonresponse to CD19 CAR T cells in pediatric acute lymphoblastic leukemia. Blood Adv. 2023;7(15):4218–4232. doi: 10.1182/bloodadvances.2022008977
  • Swati Naik RMM, Lipsitt A, Lockey T, et al. Mireya Paulina Velasquez. Safety and anti-leukemic activity of CD123-CAR T cells in pediatric patients with AML: preliminary results from a phase 1 trial. Blood. 2022;140(Supplement 1):4584–4585. doi: 10.1182/blood-2022-170201
  • Nirali N, Shah SKT, Eric Kohler M, et al. CD33 CAR T-Cells (CD33CART) for children and young adults with relapsed/refractory AML: dose-escalation results from a phase I/II multicenter trial. Blood. 2023;142(Supplement 1):771. doi: 10.1182/blood-2023-179667
  • Das N, Gupta R, Gupta SK, et al. A real-world perspective of CD123 expression in acute leukemia as promising biomarker to predict treatment outcome in B-ALL and AML. Clin Lymphoma Myeloma Leuk. 2020;20(10):e673–e684. doi: 10.1016/j.clml.2020.05.004
  • Olombel G, Guerin E, Guy J, et al. The level of blast CD33 expression positively impacts the effect of gemtuzumab ozogamicin in patients with acute myeloid leukemia. Blood. 2016;127(17):2157–2160. doi: 10.1182/blood-2016-01-689976
  • Zhang Y, Jiang S, He F, et al. Single-cell transcriptomics reveals multiple chemoresistant properties in leukemic stem and progenitor cells in pediatric AML. Genome Biol. 2023;24(1):199. doi: 10.1186/s13059-023-03031-7
  • Das RK, Vernau L, Grupp SA, et al. Naive T-cell deficits at diagnosis and after chemotherapy impair cell therapy potential in pediatric cancers. Cancer Discov. 2019;9(4):492–499. doi: 10.1158/2159-8290.CD-18-1314
  • Bizymi N, Bjelica S, Kittang AO, et al. Myeloid-derived suppressor cells in hematologic diseases: promising biomarkers and treatment targets. Hemasphere. 2019;3(1):e168. doi: 10.1097/HS9.0000000000000168
  • Bruno S, Mancini M, De Santis S, et al. The role of hypoxic bone marrow microenvironment in acute myeloid leukemia and future therapeutic opportunities. Int J Mol Sci. 2021;22(13):6857. doi: 10.3390/ijms22136857
  • Anand S, Bhagwat LT, Shestova O, et al. Cytokine release syndrome results in reduced AML killing by CD123 CAR T cells. Blood. 2023;142(Supplement 1):217. doi: 10.1182/blood-2023-182104
  • Wan X, Yang X, Yang F, et al. Outcomes of anti-CD19 CAR-T treatment of pediatric B-ALL with bone marrow and extramedullary relapse. Cancer Res Treat. 2022;54(3):917–925. doi: 10.4143/crt.2021.399
  • Moskop A, Pommert L, Thakrar P, et al. Chimeric antigen receptor T-cell therapy for marrow and extramedullary relapse of infant acute lymphoblastic leukemia. Pediatr Blood Cancer. 2021;68(1):e28739. doi:10.1002/pbc.28739
  • Rubinstein JD, Krupski C, Nelson AS, et al. Chimeric antigen receptor T cell therapy in patients with multiply relapsed or refractory extramedullary leukemia. Biology Of Blood And Marrow Transplantation. 2020;26(11):e280–e285. doi: 10.1016/j.bbmt.2020.07.036
  • Asghar N, Masood A, Dhaliwal A, et al. Chimeric antigen receptor T-Cell (CAR T-Cell) therapy for primary and secondary central nervous system lymphoma: a systematic review of literature. Clin Lymphoma Myeloma Leuk. 2023;23(1):15–21. doi: 10.1016/j.clml.2022.09.008
  • Fabrizio VA, Phillips CL, Lane A, et al. Tisagenlecleucel outcomes in relapsed/refractory extramedullary ALL: a pediatric real world CAR consortium report. Blood Adv. 2022;6(2):600–610. doi: 10.1182/bloodadvances.2021005564
  • Beyar Katz O, Perry C, Grisariu-Greenzaid S, et al. Response rates of extra-nodal diffuse large B cell lymphoma to anti-CD19-CAR T cells: a real word retrospective multicenter study. Eur J Haematol. 2023;111(1):63–71. doi: 10.1111/ejh.13968
  • Holland EM, Yates B, Ling A, et al. Characterization of extramedullary disease in B-ALL and response to CAR T-cell therapy. Blood Adv. 2022;6(7):2167–2182. doi: 10.1182/bloodadvances.2021006035
  • Wang T, Tang Y, Cai J, et al. Coadministration of CD19- and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-Cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J Clin Oncol. 2023;41(9):1670–1683. doi: 10.1200/JCO.22.01214
  • Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25(4):625–638. doi: 10.1016/j.bbmt.2018.12.758
  • Hines MR, Knight TE, McNerney KO, et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. Transplant Cell Ther. 2023;29(7):e438 431–e438 416. doi: 10.1016/j.jtct.2023.03.006
  • Brammer JE, Braunstein Z, Katapadi A, et al. Early toxicity and clinical outcomes after chimeric antigen receptor T-cell (CAR-T) therapy for lymphoma. J Immunother Cancer. 2021;9(8):e002303. doi: 10.1136/jitc-2020-002303
  • McNerney KO, Si Lim SJ, Ishikawa K, et al. HLH-like toxicities predict poor survival after the use of tisagenlecleucel in children and young adults with B-ALL. Blood Adv. 2023;7(12):2758–2771. doi: 10.1182/bloodadvances.2022008893
  • Strati P, Ahmed S, Furqan F, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–3276. doi: 10.1182/blood.2020008865
  • Gardner RA, Ceppi F, Rivers J, et al. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood. 2019;134(24):2149–2158. doi: 10.1182/blood.2019001463
  • Shah BD, Ghobadi A, Oluwole OO, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. Lancet. 2021;398(10299):491–502. doi: 10.1016/S0140-6736(21)01222-8
  • Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24(1):20–28. doi: 10.1038/nm.4441
  • Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129(25):3322–3331. doi: 10.1182/blood-2017-02-769208
  • Zhao Z, Condomines M, van der Stegen SJC, et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell. 2015;28(4):415–428. doi: 10.1016/j.ccell.2015.09.004
  • Razavi AS, Loskog A, Razi S, et al. The signaling and the metabolic differences of various CAR T cell designs. Int Immunopharmacol. 2023;114:109593. doi: 10.1016/j.intimp.2022.109593
  • Sun C, Shou P, Du H, et al. THEMIS-SHP1 recruitment by 4-1BB tunes LCK-Mediated priming of chimeric antigen receptor-redirected T cells. Cancer Cell. 2020;37(2):216–225 e216. doi: 10.1016/j.ccell.2019.12.014
  • Salter AI, Ivey RG, Kennedy JJ, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal. 2018;11(544). doi: 10.1126/scisignal.aat6753
  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–528. doi: 10.1016/S0140-6736(14)61403-3
  • Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra225. doi: 10.1126/scitranslmed.3008226
  • Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–590. doi: 10.1038/nm.3838
  • Myers RM, Li Y, Barz Leahy A, et al. Humanized CD19-targeted Chimeric Antigen Receptor (CAR) T cells in CAR-Naive and CAR-Exposed children and young adults with relapsed or refractory acute lymphoblastic leukemia. J Clin Oncol. 2021;39(27):3044–3055. doi: 10.1200/JCO.20.03458.
  • Cao J, Wang G, Cheng H, et al. Potent anti-leukemia activities of humanized CD19-targeted chimeric antigen receptor T (CAR-T) cells in patients with relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2018;93(7):851–858. doi: 10.1002/ajh.25108
  • Sommermeyer D, Hudecek M, Kosasih PL, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2016;30(2):492–500. doi: 10.1038/leu.2015.247
  • Zebley CC, Brown C, Mi T, et al. CD19-CAR T cells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. Cell Rep. 2021;37(9):110079. doi: 10.1016/j.celrep.2021.110079
  • Weber EW, Parker KR, Sotillo E, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021;372(6537). doi: 10.1126/science.aba1786
  • Cappell KM, Sherry RM, Yang JC, et al. Long-term follow-up of anti-CD19 chimeric antigen receptor T-cell therapy. J Clin Oncol. 2020;38(32):3805–3815. doi: 10.1200/JCO.20.01467
  • Martin T, Usmani SZ, Berdeja JG, et al. Ciltacabtagene Autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-Cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol. 2023;41(6):1265–1274. doi: 10.1200/JCO.22.00842
  • Lamble AJ, Myers RM, Taraseviciute A, et al. Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Adv. 2023;7(4):575–585. doi: 10.1182/bloodadvances.2022007423
  • Asnani M, Hayer KE, Naqvi AS, et al. Retention of CD19 intron 2 contributes to CART-19 resistance in leukemias with subclonal frameshift mutations in CD19. Leukemia. 2020;34(4):1202–1207. doi: 10.1038/s41375-019-0580-z
  • Orlando EJ, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24(10):1504–1506. doi: 10.1038/s41591-018-0146-z
  • Sotillo E, Barrett DM, Black KL, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5(12):1282–1295. doi: 10.1158/2159-8290.CD-15-1020
  • Fischer J, Paret C, El Malki K, et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother. 2017;40(5):187–195. doi: 10.1097/CJI.0000000000000169
  • Plaks V, Rossi JM, Chou J, et al. CD19 target evasion as a mechanism of relapse in large B-cell lymphoma treated with axicabtagene ciloleucel. Blood. 2021;138(12):1081–1085. doi: 10.1182/blood.2021010930
  • Rabilloud T, Potier D, Pankaew S, et al. Single-cell profiling identifies pre-existing CD19-negative subclones in a B-ALL patient with CD19-negative relapse after CAR-T therapy. Nat Commun. 2021;12(1):865. doi: 10.1038/s41467-021-21168-6
  • Qiu S, Pan Y, Shi S, et al. Genetic mechanism of leukemia relapse following CD19 chimeric antigen receptor T cell therapy. Cancer Biother Radiopharm. 2022;37(5):335–341. doi: 10.1089/cbr.2020.4630
  • Bagashev A, Sotillo E, Tang CH, et al. CD19 alterations emerging after CD19-directed immunotherapy cause retention of the misfolded protein in the endoplasmic reticulum. Mol Cell Biol. 2018;38(21). doi: 10.1128/MCB.00383-18
  • Braig F, Brandt A, Goebeler M, et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood. 2017;129(1):100–104. doi: 10.1182/blood-2016-05-718395
  • Heard A, Landmann JH, Hansen AR, et al. Antigen glycosylation regulates efficacy of CAR T cells targeting CD19. Nat Commun. 2022;13(1):3367. doi: 10.1038/s41467-022-31035-7
  • Walker AJ, Majzner RG, Zhang L, et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol Ther. 2017;25(9):2189–2201. doi: 10.1016/j.ymthe.2017.06.008
  • Watanabe K, Terakura S, Martens AC, et al. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 zeta chimeric antigen receptor-modified effector CD8+ T cells. J Immunol. 2015;194(3):911–920. doi: 10.4049/jimmunol.1402346
  • Ruella M, Xu J, Barrett DM, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med. 2018;24(10):1499–1503. doi: 10.1038/s41591-018-0201-9
  • Joly E, Hudrisier D. What is trogocytosis and what is its purpose? Nat Immunol. 2003;4(9):815. doi: 10.1038/ni0903-815
  • Hamieh M, Dobrin A, Cabriolu A, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 2019;568(7750):112–116. doi: 10.1038/s41586-019-1054-1
  • Schoutrop E, Renken S, Micallef Nilsson I, et al. Trogocytosis and fratricide killing impede MSLN-directed CAR T cell functionality. Oncoimmunology. 2022;11(1):2093426. doi: 10.1080/2162402X.2022.2093426
  • Olson ML, Mause ERV, Radhakrishnan SV, et al. Low-affinity CAR T cells exhibit reduced trogocytosis, preventing rapid antigen loss, and increasing CAR T cell expansion. Leukemia. 2022;36(7):1943–1946. doi: 10.1038/s41375-022-01585-2
  • Kurzer JH, Weinberg OK. To B- or not to B-: a review of lineage switched acute leukemia. Int J Lab Hematol. 2022;44 Suppl 1(S1):64–70. doi: 10.1111/ijlh.13923
  • Jacoby E, Nguyen SM, Fountaine TJ, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7(1):12320. doi: 10.1038/ncomms12320
  • Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–2410. doi: 10.1182/blood-2015-08-665547
  • Liao W, Kohler ME, Fry T, et al. Does lineage plasticity enable escape from CAR-T cell therapy? Lessons from MLL-r leukemia. Exp Hematol. 2021;100:1–11. doi: 10.1016/j.exphem.2021.07.002
  • Oak J, Spiegel JY, Sahaf B, et al. Target antigen downregulation and other mechanisms of failure after Axicabtagene Ciloleucel (CAR19) therapy. Blood. 2018;132(Supplement 1):4656–4656. doi: 10.1182/blood-2018-99-120206
  • Neelapu SS, Rossi JM, Jacobson CA, et al. CD19-loss with preservation of other B cell lineage features in patients with large B cell lymphoma who relapsed post-axi-cel. Blood. 2019;134(Supplement_1):203–203. doi: 10.1182/blood-2019-126218
  • Yang W, Xie S, Li Y, et al. Lineage switch from lymphoma to myeloid neoplasms: first case series from a single institution. Open Med (Wars). 2022;17(1):1466–1472. doi: 10.1515/med-2022-0521
  • Da via MC, Dietrich O, Truger M, et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat Med. 2021;27(4):616–619. doi: 10.1038/s41591-021-01245-5
  • Samur MK, Fulciniti M, Aktas Samur A, et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat Commun. 2021;12(1):868. doi: 10.1038/s41467-021-21177-5
  • Schultz LM, Eaton A, Baggott C, et al. Outcomes after nonresponse and relapse post-tisagenlecleucel in children, adolescents, and young adults with B-Cell acute lymphoblastic leukemia. J Clin Oncol. 2023;41(2):354–363. doi: 10.1200/JCO.22.01076
  • Wudhikarn K, Flynn JR, Riviere I, et al. Interventions and outcomes of adult patients with B-ALL progressing after CD19 chimeric antigen receptor T-cell therapy. Blood. 2021;138(7):531–543. doi: 10.1182/blood.2020009515
  • Brudno JN, Lam N, Vanasse D, et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat Med. 2020;26(2):270–280. doi: 10.1038/s41591-019-0737-3
  • Annesley C, Gardner R, Wilson A, et al. Novel CD19t T-Antigen presenting cells expand CD19 CAR T cells in vivo. Blood. 2019;134(Supplement_1):223–223. doi: 10.1182/blood-2019-131346
  • Pham-Danis C, Leach L, Ebmeier C, et al. Abstract 3607: a novel adjunctive LAT-activating CAR T (ALA-CART) cell platform demonstrates enhanced antigen sensitivity and eradication of antigen-low leukemia. Cancer Res. 2022;82(12_Supplement):3607–3607. doi: 10.1158/1538-7445.AM2022-3607
  • Yang X, Yu Q, Xu H, et al. Upregulation of CD22 by Chidamide promotes CAR T cells functionality. Sci Rep. 2021;11(1):20637. doi: 10.1038/s41598-021-00227-4
  • Xu Y, Li S, Wang Y, et al. Induced CD20 expression on B-Cell malignant cells heightened the cytotoxic activity of chimeric antigen receptor engineered T cells. Hum Gene Ther. 2019;30(4):497–510. doi: 10.1089/hum.2018.119
  • Dickinson MJ, Barba P, Jager U, et al. A novel autologous CAR-T therapy, YTB323, with preserved T-cell stemness shows enhanced CAR T-cell efficacy in preclinical and early clinical development. Cancer Discov. 2023;13(9):1982–1997. doi: 10.1158/2159-8290.CD-22-1276
  • Arcangeli S, Falcone L, Camisa B, et al. Next-generation manufacturing protocols enriching T(SCM) CAR T cells can overcome disease-specific T cell defects in cancer patients. Front Immunol. 2020;11:1217. doi: 10.3389/fimmu.2020.01217
  • Ghassemi S, Nunez-Cruz S, O’Connor RS, et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immun Res. 2018;6(9):1100–1109. doi: 10.1158/2326-6066.CIR-17-0405
  • Eyquem J, Mansilla-Soto J, Giavridis T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543(7643):113–117. doi: 10.1038/nature21405
  • Chong EA, Melenhorst JJ, Lacey SF, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR. Blood. 2017;129(8):1039–1041. doi: 10.1182/blood-2016-09-738245
  • Wei J, Luo C, Wang Y, et al. PD-1 silencing impairs the anti-tumor function of chimeric antigen receptor modified T cells by inhibiting proliferation activity. J Immunother Cancer. 2019;7(1):209. doi: 10.1186/s40425-019-0685-y
  • Maude SL, Hucks GE, Seif AE, et al. The effect of pembrolizumab in combination with CD19-targeted chimeric antigen receptor (CAR) T cells in relapsed acute lymphoblastic leukemia (ALL). J Clin Oncol. 2017;35(15_suppl):103–103. doi: 10.1200/JCO.2017.35.15_suppl.103
  • Major A, Yu J, Shukla N, et al. Efficacy of checkpoint inhibition after CAR-T failure in aggressive B-cell lymphomas: outcomes from 15 US institutions. Blood Adv. 2023;7(16):4528–4538. doi: 10.1182/bloodadvances.2023010016
  • Jaeger U, Worel N, McGuirk JP, et al. Safety and efficacy of tisagenlecleucel plus pembrolizumab in patients with r/r DLBCL: phase 1b PORTIA study results. Blood Adv. 2023;7(11):2283–2286. doi: 10.1182/bloodadvances.2022007779
  • Rossetti R, Brand H, Lima SCG, et al. Combination of genetically engineered T cells and immune checkpoint blockade for the treatment of cancer. Immunother Adv. 2022;2(1):ltac005. doi: 10.1093/immadv/ltac005
  • Cherkassky L, Morello A, Villena-Vargas J, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126(8):3130–3144. doi: 10.1172/JCI83092
  • Rupp LJ, Schumann K, Roybal KT, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep. 2017;7(1):737. doi:10.1038/s41598-017-00462-8
  • Hu W, Zi Z, Jin Y, et al. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immun. 2019;68(3):365–377. doi: 10.1007/s00262-018-2281-2
  • Hu B, Zou Y, Zhang L, et al. Nucleofection with plasmid DNA for CRISPR/Cas9-mediated inactivation of programmed cell death protein 1 in CD133-specific CAR T cells. Hum Gene Ther. 2019;30(4):446–458. doi: 10.1089/hum.2017.234
  • Cao X, Jin X, Zhang X, et al. Small-molecule compounds boost CAR-T cell therapy in hematological malignancies. Curr Treat Options Oncol. 2023;24(3):184–211. doi: 10.1007/s11864-023-01049-4
  • Yang M, Wang L, Ni M, et al. Pre-sensitization of malignant B cells through venetoclax significantly improves the cytotoxic efficacy of CD19.CAR-T cells. Front Immunol. 2020;11:608167. doi: 10.3389/fimmu.2020.608167
  • Karlsson H, Lindqvist AC, Fransson M, et al. Combining CAR T cells and the bcl-2 family apoptosis inhibitor ABT-737 for treating B-cell malignancy. Cancer Gene Ther. 2013;20(7):386–393. doi: 10.1038/cgt.2013.35
  • Wang Y, Tong C, Dai H, et al. Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nat Commun. 2021;12(1):409. doi: 10.1038/s41467-020-20696-x
  • You L, Han Q, Zhu L, et al. Decitabine-mediated epigenetic reprograming enhances anti-leukemia efficacy of CD123-targeted chimeric antigen receptor T-Cells. Front Immunol. 2020;11:1787. doi: 10.3389/fimmu.2020.01787
  • Ma Y, Dai H, Cui Q, et al. Decitabine in combination with fludarabine and cyclophosphamide as a lymphodepletion regimen followed by CD19/CD22 bispecific targeted CAR T-cell therapy significantly improves survival in relapsed/refractory B-ALL patients. Exp Hematol Oncol. 2023;12(1):36. doi: 10.1186/s40164-023-00397-z
  • Qu C, Zou R, Wang P, et al. Decitabine-primed tandem CD19/CD22 CAR-T therapy in relapsed/refractory diffuse large B-cell lymphoma patients. Front Immunol. 2022;13:969660. doi: 10.3389/fimmu.2022.969660
  • Ramakrishna S, Highfill SL, Walsh Z, et al. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin Cancer Res. 2019;25(17):5329–5341. doi: 10.1158/1078-0432.CCR-18-3784
  • Xie B, Li Z, Zhou J, et al. Current status and perspectives of dual-targeting chimeric antigen receptor T-cell therapy for the treatment of hematological malignancies. Cancers (Basel). 2022;14(13):3230. doi: 10.3390/cancers14133230
  • Shah NN, Maatman T, Hari P, et al. Multi targeted CAR-T cell therapies for B-Cell malignancies. Front Oncol. 2019;9:146. doi: 10.3389/fonc.2019.00146
  • Annesley C, Summers C, Pulsipher MA, et al. SCRI-CAR19x22v2 T cell product demonstrates bispecific activity in B-ALL. Blood. 2021;138(Supplement 1):470–470. doi: 10.1182/blood-2021-148881
  • Shalabi H, Qin H, Su A, et al. CD19/22 CAR T cells in children and young adults with B-ALL: phase 1 results and development of a novel bicistronic CAR. Blood. 2022;140(5):451–463. doi: 10.1182/blood.2022015795
  • Spiegel JY, Patel S, Muffly L, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27(8):1419–1431. doi: 10.1038/s41591-021-01436-0
  • Cordoba S, Onuoha S, Thomas S, et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med. 2021;27(10):1797–1805. doi: 10.1038/s41591-021-01497-1
  • Pan J, Tang K, Luo Y, et al. Sequential CD19 and CD22 chimeric antigen receptor T-cell therapy for childhood refractory or relapsed B-cell acute lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2023;24(11):1229–1241. doi: 10.1016/S1470-2045(23)00436-9
  • Chiesa R, Georgiadis C, Syed F, et al. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N Engl J Med. 2023;389(10):899–910. doi: 10.1056/NEJMoa2300709
  • Freiwan A, Zoine JT, Crawford JC, et al. Engineering naturally occurring CD7- T cells for the immunotherapy of hematological malignancies. Blood. 2022;140(25):2684–2696. doi: 10.1182/blood.2021015020
  • Watanabe N, Mo F, Zheng R, et al. Feasibility and preclinical efficacy of CD7-unedited CD7 CAR T cells for T cell malignancies. Mol Ther. 2023;31(1):24–34. doi: 10.1016/j.ymthe.2022.09.003
  • Amini L, Silbert SK, Maude SL, et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat Rev Clin Oncol. 2022. Table. 19(5):342–355. doi: 10.1038/s41571-022-00607-3
  • Pulsipher MA, Han X, Maude SL, et al. Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia. Blood Cancer Discov. 2022;3(1):66–81. doi: 10.1158/2643-3230.BCD-21-0095
  • Shah NN, Lee DW, Yates B, et al. Long-term follow-up of CD19-CAR T-Cell therapy in children and young adults with B-ALL. J Clin Oncol. 2021;39(15):1650–1659. doi: 10.1200/JCO.20.02262
  • Summers C, Wu QV, Annesley C, et al. Hematopoietic cell transplantation after CD19 chimeric antigen receptor T cell-induced acute lymphoblastic lymphoma remission confers a leukemia-free survival advantage. Transplant Cell Ther. 2022;28(1):21–29. doi: 10.1016/j.jtct.2021.10.003
  • Zhao YL, Liu DY, Sun RJ, et al. Integrating CAR T-Cell therapy and transplantation: comparisons of safety and long-term efficacy of allogeneic hematopoietic stem cell transplantation after CAR T-Cell or chemotherapy-based complete remission in B-cell acute lymphoblastic leukemia. Front Immunol. 2021;12:605766. doi: 10.3389/fimmu.2021.605766
  • Ping N, Qu C, Li M, et al. Overall survival benefits provided by lenalidomide maintenance after chimeric antigen receptor T cell therapy in patients with refractory/relapsed diffuse large B-cell lymphoma. Ann Transl Med. 2022;10(6):298. doi: 10.21037/atm-22-20
  • Holland EM, Molina JC, Dede K, et al. Efficacy of second CAR-T (CART2) infusion limited by poor CART expansion and antigen modulation. J Immunother Cancer. 2022;10(5):e004483. doi: 10.1136/jitc-2021-004483
  • Chmielewski M, Hombach AA, Abken H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev. 2014;257(1):83–90. doi: 10.1111/imr.12125
  • Hassan R, Butler M, O’Cearbhaill RE, et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: phase 1/2 trial interim results. Nat Med. 2023;29(8):2099–2109. doi: 10.1038/s41591-023-02452-y
  • Adusumilli PS, Zauderer MG, Riviere I, et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 2021;11(11):2748–2763. doi: 10.1158/2159-8290.CD-21-0407
  • Murad JP, Kozlowska AK, Lee HJ, et al. Effective targeting of TAG72(+) peritoneal ovarian tumors via regional delivery of CAR-Engineered T cells. Front Immunol. 2018;9:2268. doi: 10.3389/fimmu.2018.02268
  • Liu Z, Zhou J, Yang X, et al. Safety and antitumor activity of GD2-specific 4SCAR-T cells in patients with glioblastoma. Mol Cancer. 2023;22(1):3. doi: 10.1186/s12943-022-01711-9
  • Mehta RS, Shpall EJ, Rezvani K. Cord blood as a source of natural killer cells. Front Med. 2015;2:93. doi: 10.3389/fmed.2015.00093
  • Knorr DA, Ni Z, Hermanson D, et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med. 2013;2(4):274–283. doi: 10.5966/sctm.2012-0084
  • Luevano M, Madrigal A, Saudemont A. Generation of natural killer cells from hematopoietic stem cells in vitro for immunotherapy. Cell Mol Immunol. 2012;9(4):310–320. doi: 10.1038/cmi.2012.17
  • Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545–553. doi: 10.1056/NEJMoa1910607
  • Allison M, Mathews J, Gilliland T, et al. Natural killer cell-mediated immunotherapy for leukemia. Cancers (Basel). 2022;14(3):843. doi: 10.3390/cancers14030843
  • Maalej KM, Merhi M, Inchakalody VP, et al. CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Mol Cancer. 2023;22(1):20. doi: 10.1186/s12943-023-01723-z
  • Shin MH, Oh E, Kim Y, et al. Recent advances in CAR-Based solid tumor immunotherapy. Cells. 2023;12(12):1606. doi: 10.3390/cells12121606
  • Lu H, Zhao X, Li Z, et al. From CAR-T cells to CAR-NK cells: a developing immunotherapy method for hematological malignancies. Front Oncol. 2021;11:720501. doi: 10.3389/fonc.2021.720501
  • Huo Y, Zhang H, Sa L, et al. M1 polarization enhances the antitumor activity of chimeric antigen receptor macrophages in solid tumors. J Transl Med. 2023;21(1):225. doi: 10.1186/s12967-023-04061-2
  • Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 2020;38(8):947–953. doi: 10.1038/s41587-020-0462-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.