585
Views
22
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Responses of elevated CO2 on photosynthesis and nitrogen metabolism in Ulva lactuca (Chlorophyta) at different temperature levels

&
Pages 1043-1052 | Accepted 04 Jun 2015, Published online: 16 Sep 2015

References

  • Alexandre A, Silva J, Buapet P, Björk M, Santos R. 2012. Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecology and Evolution 2:2625–35. doi: 10.1002/ece3.333
  • Badger MR, Price GD. 2003. CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. Journal of Experimental Botany 54:609–22. doi: 10.1093/jxb/erg076
  • Beardall J, Giordano M. 2002. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Functional Plant Biology 29:335–47. doi: 10.1071/PP01195
  • Behrenfeld MJ, Prasil O, Kolber ZS, Babin M, Falkowski PG. 1998. Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynthesis Research 58:259–68. doi: 10.1023/A:1006138630573
  • Berry J, Raison J. 1981. Responses of macrophytes to temperature. In Lange OL, Nobel PS, Osmond CB, Ziegler H, editors. Physiological Plant Ecology I. Berlin: Springer, p 277–338.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–54. doi: 10.1016/0003-2697(76)90527-3
  • Cabello-Pasini A, Macías-Carranza V, Abdala R, Korbee N, Figueroa FL. 2011. Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulva rigida (Chlorophyta). Journal of Applied Phycology 23:363–69. doi: 10.1007/s10811-010-9548-0
  • Corzo A, Niell F. 1991. Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in situ method. Journal of Experimental Marine Biology and Ecology 146:181–91. doi: 10.1016/0022-0981(91)90024-Q
  • Davison IR. 1991. Environmental effects on algal photosynthesis: Temperature. Journal of Phycology 27:2–8. doi: 10.1111/j.0022-3646.1991.00002.x
  • Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: The other CO2 problem. Annual Review of Marine Science 1:169–92. doi: 10.1146/annurev.marine.010908.163834
  • Falkowski PG, Raven JA. 2013. Aquatic Photosynthesis. Princeton: Princeton University Press. 488 pages.
  • Figueroa FL, Conde-Álvarez R, Gómez I. 2003. Relations between elevatron transport rates determined by pulse amplitude modulated chlorophyll fluorescence and oxygen evolution in macroalgae under different light conditions. Photosynthesis Research 75:259–75. doi: 10.1023/A:1023936313544
  • Figueroa FL, Israel A, Neori A, Martínez B, Malta E, Ang Jr P, et al. 2009. Effect of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chlorophyta): Response to short-term stress. Aquatic Biology 7:173–83. doi: 10.3354/ab00187
  • Figueroa FL, Barufi JB, Malta EJ, Conde-Álvarez R, Nitschke U, Arenas F, et al. 2014. Short-term effects of increasing CO2, nitrate and temperature on three Mediterranean macroalgae: Biochemical composition. Aquatic Biology 22:177–93. doi: 10.3354/ab00610
  • Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA. 2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology 43:485–96. doi: 10.1111/j.1529-8817.2007.00355.x
  • Gao K, Aruga Y, Asada K, Ishihara T, Akano T, Kiyohara M. 1991. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. Journal of Applied Phycology 3:355–62. doi: 10.1007/BF02392889
  • Gao K, Aruga Y, Asada K, Kiyohara M. 1993. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. Journal of Applied Phycology 5:563–71. doi: 10.1007/BF02184635
  • Gao Y, Smith GJ, Alberte RS. 2000. Temperature dependence of nitrate reductase activity in marine phytoplankton: Biochemical analysis and ecological implications. Journal of Phycology 36:304–13. doi: 10.1046/j.1529-8817.2000.99195.x
  • García-Sánchez MJ, Fernández JA, Niell X. 1994. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55–61.
  • Gardner W, Wynne D, Dunstan W. 1976. Simplified procedure for the manual analysis of nitrate in seawater. Marine Chemistry 4:393–96. doi: 10.1016/0304-4203(76)90024-4
  • Giordano M, Chen YB, Koblizek M, Falkowski PG. 2005. Regulation of nitrate reductase in Chlamydomonas reinhardtii by the redox state of the plastoquinone pool. European Journal of Phycology 40:345–52. doi: 10.1080/09670260500334263
  • Gordillo FJ, Niell FX, Figueroa FL. 2001. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70. doi: 10.1007/s004250000468
  • Gordillo FJ, Figueroa FL, Niell FX. 2003. Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218:315–22. doi: 10.1007/s00425-003-1087-3
  • Henley WJ. 1992. Growth and photosynthesis of Ulva rotundata (Chlorophyta) as a function of temperature and square wave irradiance in indoor culture. Journal of Phycology 28:625–34. doi: 10.1111/j.0022-3646.1992.00625.x
  • Henley WJ. 1993. Measurement and interpretation of photosynthetic light response curves in algae in the context of photoinhibition and diel changes. Journal of Phycology 29:729–39. doi: 10.1111/j.0022-3646.1993.00729.x
  • Hofmann LC, Straub S, Bischof K. 2013. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. Journal of Experimental Botany 64:899–908. doi: 10.1093/jxb/ers369
  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, et al. 2001. Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press. 881 pages.
  • Masojídek J, Grobbelaar JU, Pechar L, Koblízek M. 2001. Photosystem II electron transport rates and oxygen production in natural waterblooms of freshwater cyanobacteria during a diel cycle. Journal of Plankton Research 23:57–66. doi: 10.1093/plankt/23.1.57
  • Mercado JM, Javier F, Gordillo L, Niell FX, Figueroa FL. 1999. Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. Journal of Applied Phycology 11:455–61. doi: 10.1023/A:1008194223558
  • Orr JC, Caldeira K, Fabry V, Gattuso JP, Haugan P, Lehodey P, et al. 2009. Research priorities for understanding ocean acidification: Summary from the Second Symposium on the Ocean in a High CO2 World. Oceanography 22(4):182–89. doi: 10.5670/oceanog.2009.107
  • Porzio L, Buia MC, Hall-Spencer JM. 2011. Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology 400:278–87. doi: 10.1016/j.jembe.2011.02.011
  • Raven JA, Geider RJ. 1988. Temperature and algal growth. New Phytologist 110:441–61. doi: 10.1111/j.1469-8137.1988.tb00282.x
  • Raven JA, Johnston AM, Turpin DH. 1993. Influence of changes in CO2 concentration and temperature on marine phytoplankton 13C/12C ratios: An analysis of possible mechanisms. Global and Planetary Change 8:1–12. doi: 10.1016/0921-8181(93)90058-V
  • Ritchie RJ, Runcie JW. 2013. Photosynthetic electron transport in an anoxygenic photosynthetic bacterium Afifella (Rhodopseudomonas) marina measured using PAM fluorometry. Photochemistry and Photobiology 89:370–83. doi: 10.1111/j.1751-1097.2012.01241.x
  • Schreiber U, Endo T, Mi H, Asada K. 1995. Quenching analysis of chlorophyll fluorescence by the saturation pulse method: Particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant and Cell Physiology 36:873–82.
  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, et al. 2007. Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 18 pages.
  • Stengel DB, Conde-Álvarez R, Connan S, Nitschke U, Arenas F, Abreu H, et al. 2014. Short-term effects of CO2, nutrients and temperature on three marine macroalgae under solar radiation. Aquatic Bology 22:159–76. doi: 10.3354/ab00576
  • Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144:307–13. doi: 10.1016/S0176-1617(11)81192-2
  • Zou D. 2005. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 250:726–35. doi: 10.1016/j.aquaculture.2005.05.014
  • Zou D, Gao K. 2010. Physiological responses of seaweeds to elevated atmospheric CO2 concentrations. In: Seckbach J, Einav R, Israel A, editors. Seaweeds and their Role in Globally Changing Environments. Dordrecht, Netherlands: Springer, p 115–26.
  • Zou D, Gao K. 2014a. The photosynthetic and respiratory responses to temperature and nitrogen supply in the marine green macroalga Ulva conglobata (Chlorophyta). Phycologia 53:86–94. doi: 10.2216/13-189.1
  • Zou D, Gao K. 2014b. Temperature response of photosynthetic light- and carbon-use characteristics in the red seaweed Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). Journal of Phycology 50:366–75. doi: 10.1111/jpy.12171

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.