275
Views
29
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Using the F/R-ratio for an evaluation of the ability of the demosponge Halichondria panicea to nourish solely on phytoplankton versus free-living bacteria in the sea

, &
Pages 907-916 | Received 18 Apr 2016, Accepted 02 Jun 2016, Published online: 07 Sep 2016

References

  • Afzelius BA. 1961. Flimmer-flagellum of the sponge. Nature 191:1318–19. doi:10.1038/1911318b0
  • Barthel D. 1986. On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. I. Substrate specificity, growth and reproduction. Marine Ecology Progress Series 32:291–98. doi:10.3354/meps032291
  • Barthel D. 1988. On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. II. Biomass, production, energy budget and integration in environmental processes. Marine Ecology Progress Series 43:87–93. doi:10.3354/meps043087
  • Barthel D. 1989. Growth of the sponge Halichondria panicea in the North Sea habitat. Proceedings of the 21st EMBS, Gdansk, 14–19 September 1986, p 23–30.
  • Bergquist PR. 1978. Sponges. Berkeley, CA: University of California Press. 268 pages.
  • Brill B. 1973. Untersuchungen zur Ultrastruktur der Choanocyte von Ephydatia fluviatilis L. Zeitschrift für Zellforschung und mikroscopische Anatomie 144:231–45.
  • Budd GE, Jensen S. 2015. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biological Reviews. 28 pages. doi:10.1111/brv.12239
  • Clausen I, Riisgård HU. 1996. Growth, filtration and respiration in the mussel Mytilus edulis: no evidence for physiological regulation of the filter-pump to nutritional needs. Marine Ecology Progress Series 141:37–45. doi:10.3354/meps141037
  • Duckworth AR, Pomponi SA. 2005. Relative importance of bacteria, microalgae and yeast for growth of the sponge Halichondria melanadocia (De Laubenfels, 1936): a laboratory study. Journal of Experimental Marine Biology and Ecology 323:151–59. doi:10.1016/j.jembe.2005.03.007
  • Elliott GRD, Leys SP. 2007. Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge. Journal of Experimental Biology 210:3736–48. doi:10.1242/jeb.003392
  • Fenchel T. 1982a. Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology. Marine Ecology Progress Series 8:211–23. doi:10.3354/meps008211
  • Fenchel T. 1982b. Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Marine Ecology Progress Series 8:225–31. doi:10.3354/meps008225
  • Fenchel T. 1984. Suspended marine bacteria as a food source. In: Fasham MJ, editor. Energy and Materials in Marine Ecosystems. New York: Plenum Press, p 301–15.
  • Fenchel T. 2008. The microbial loop – 25 years later. Journal of Experimental Marine Biology and Ecology 366:99–103. doi:10.1016/j.jembe.2008.07.013
  • Fenchel T, Finlay BJ. 1983. Respiration rates in heterotrophic, free-living protozoa. Microbial Ecology 9:99–122. doi:10.1007/BF02015125
  • Fjerdingstad EJ. 1961a. The ultrastructure of choanocyte collars in Spongilla lacustris (L.). Zeitschrift für Zellforschung 53:645–57. doi:10.1007/BF00339512
  • Fjerdingstad EJ. 1961b. Ultrastructure of the collar of the choanoflagellate Codonosiga botrytis (Ehrenb.). Zeitschrift für Zellforschung 54:499–510. doi:10.1007/BF00340451
  • Gaino E, Bavestrello G, Cattaneo-Vietti R, Sarà M. 1994. Scanning electron microscope evidence for diatom uptake by two Antarctic sponges. Polar Biology 14:55–58. doi:10.1007/BF00240273
  • Hadas E, Ilan M, Shpigel M. 2008. Oxygen consumption by a coral reef sponge. Journal of Experimental Biology 211:2185–90. doi:10.1242/jeb.015420
  • Hartman WD, Reiswig HM. 1973. The individuality of sponges. In: Boardman RS, Cheetham AH, Oliver Jr WA, editors. Animal Colonies: Development and Function Through Time. Stroudsburg, PA: Dowden, Hutchinson & Ross, p 567–84.
  • James-Clark H. 1867. On the spongiae ciliatae as infusoria flagellata: or observations on the structure, animality and relationship of Leucosolenia botryoides Bowerbank. Memoirs of the Boston Society of Natural History 1:305–40.
  • Jørgensen CB. 1966. Biology of Suspension Feeding. Oxford: Pergamon Press. 357 pages.
  • Kilian EF. 1952. Wasserströmung und Nahrungsaufnahme beim Süsswasserschwamm Ephydatia fluviatilis. Zeitschrift für vergleichende Physiologie 34:407–47. doi:10.1007/BF00297877
  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, et al. 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–88. doi:10.1038/nature06617
  • Larsen PS, Riisgård HU. 1994. The sponge pump. Journal of Theoretical Biology 168:53–63. doi:10.1006/jtbi.1994.1087
  • Lawn ID, Mackie GO, Silver G. 1981. Conduction system in a sponge. Science 211:1169–71. doi:10.1126/science.7466387
  • Leadbeater BSC. 2015. The Choanoflagellates: Evolution, Biology, and Ecology. Cambridge: Cambridge University Press. 315 pages.
  • Leys SP, Eerkes-Medrano DI. 2006. Feeding in a calcareous sponge: particle uptake by pseudopodia. Biological Bulletin 211:157–71. doi:10.2307/4134590
  • Leys SP, Meech RW. 2006. Physiology of coordination in sponges. Canadian Journal of Zoology 84:288–306. doi:10.1139/z05-171
  • Leys SP, Yahel G, Reidenbach MA, Tunnicliffe V, Shavit U, Reiswig HM. 2011. The sponge pump: the role of current induced flow in the design of the sponge body plan. PLoS One 6(12):e27787. 17 pages. doi:10.1371/journal.pone.0027787
  • Li QP, Franks PJS, Landry MR, Goericke R, Taylor AG. 2010. Modeling phytoplankton growth rates and chlorophyll to carbon ratios in California coastal and pelagic ecosystems. Journal of Geophysical Research 115:G04003. 12 pages. doi:10.1029/2009JG001111
  • Mah JL, Christensen-Dalsgaard KK, Leys SP. 2014. Choanoflagellate and choanocyte collar-flagellar systems and the assumption of homology. Evolution and Development 16:25–37. doi:10.1111/ede.12060
  • Maldonado M. 2004. Choanoflagellates, choanocytes, and animal multicellularity. Invertebrate Biology 123:1–22. doi:10.1111/j.1744-7410.2004.tb00138.x
  • McMurray SE, Tawlik JR, Finelli CM. 2014. Trait-mediated ecosystem impacts: how morphology and size affect pumping rates of the Caribbean giant barrel sponge. Aquatic Biology 23:1–13. doi:10.3354/ab00612
  • Mills DB, Ward LM, Jones CA, Sweeten B, Forth M, Treusch AH, et al. 2014. Oxygen requirements of the earliest animals. Proceedings of the National Academy of Sciences 111:4168–72. doi:10.1073/pnas.1400547111
  • Nickel M, Donath T, Schweikert M, Beckmann F. 2006. Functional morphology of Tethya species (Porifera): 1. Quantitative 3D-analysis of Tethya wilhelma by synchroton radiation based X-ray microtomography. Zoomorphology 125:209–23. doi:10.1007/s00435-006-0021-1
  • Nickel M, Scheer C, Hammel JU, Herzen J, Beckmann F. 2011. The contractile sponge epithelium sensu lato – body contraction of the demosponge Tethya wilhelma is mediated by pinacoderm. Journal of Experimental Biology 214:1692–98. doi:10.1242/jeb.049148
  • Nielsen C. 2008. Six major steps in animal evolution: are we derived sponge larvae? Evolution and Development 10:241–57. doi:10.1111/j.1525-142X.2008.00231.x
  • Osinga R, Kleijn R, Groenendijk E, Niesink P, Tramper J, Wijffels RH. 2001. Development of in vivo sponge cultures: particle feeding by the tropical sponge Pseudosuberites aff. andrewsi. Marine Biotechnology 3:544–54. doi:10.1007/s1012601-0078-2
  • Parker GH. 1910. The reactions of sponges, with a consideration of the origin of the nervous system. Journal of Experimental Zoology 8:1–41. doi:10.1002/jez.1400080102
  • Pile AJ, Patterson MR, Witman JD. 1996. In situ grazing on plankton <10 µm by the boreal sponge Mycale lingua. Marine Ecology Progress Series 141:95–102. doi:10.3354/meps141095
  • Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA. 1997. Trophic effects of sponge feeding within Lake Baikal's littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnology and Oceanography 42:178–84. doi:10.4319/lo.1997.42.1.0178
  • Reiswig HM. 1971. Particle feeding in natural populations of three marine Demospongiae. Biological Bulletin 141:568–91. doi:10.2307/1540270
  • Reiswig HM. 1974. Water transport, respiration and energetics of three tropical marine sponges. Journal of Experimental Marine Biology and Ecology 14:231–49. doi:10.1016/0022-0981(74)90005-7
  • Reiswig HM. 1975a. In situ pumping activities of tropical Demospongiae. Marine Biology 9:38–50. doi:10.1007/BF00348816
  • Reiswig HM. 1975b. Bacteria as food for temperate-water marine sponges. Canadian Journal of Zoology 53:582–89. doi:10.1139/z75-072
  • Reiswig HM. 1981. Partial carbon and energy budgets of the bacteriosponge Verongia fistularis (Porifera: Demospongiae) in Barbados. Marine Ecology 2:273–93. doi:10.1111/j.1439-0485.1981.tb00271.x
  • Ribes M, Coma R, Gili J-M. 1999. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Marine Ecology Progress Series 176:179–90. doi:10.3354/meps176179
  • Riisgård HU. 1998. No foundation of a ‘3/4 power scaling law’ for respiration in biology. Ecology Letters 1:71–73. doi:10.1046/j.1461-0248.1998.00020.x
  • Riisgård HU. 2015. Filter-feeding mechanisms in crustaceans. In: Thiel M, Watling L, editors. The Natural History of Crustaceans, Volume II. Life Styles and Feeding Biology. Oxford: Oxford University Press, p 418–63.
  • Riisgård HU, Larsen PS. 2000. Comparative ecophysiology of active zoobenthic filter-feeding, essence of current knowledge. Journal of Sea Research 44:169–93. doi:10.1016/S1385-1101(00)00054-X
  • Riisgård HU, Larsen PS. 2015. Physiologically regulated valve-closure makes mussels long-term starvation survivors: test of hypothesis. Journal of Molluscan Studies 81:303–07. doi:10.1093/mollus/eyu087
  • Riisgård HU, Thomassen S, Jakobsen H, Weeks J, Larsen PS. 1993. Suspension feeding in marine sponges Halichondria panicea and Haliclona urceolus: effects of temperature on filtration rate and energy cost of pumping. Marine Ecology Progress Series 96:177–88. doi:10.3354/meps096177
  • Riisgård HU, Pleissner D, Lundgreen K, Larsen PS. 2013. Growth of mussels Mytilus edulis at algal (Rhodomonas salina) concentrations below and above saturation levels for reduced filtration rate. Marine Biology Research 9:1005–17. doi:10.1080/17451000.2012.742549
  • Riisgård HU, Lundgreen K, Larsen PS. 2014. Potential for production of ‘mini-mussels’ in Great Belt (Denmark) evaluated on basis of actual and modeled growth of young mussels Mytilus edulis. Aquaculture International 22:859–85. doi:10.1007/s10499-013-9713-y
  • Savarese M, Patterson MR, Chernykh VI, Fialkov VA. 1997. Trophic effects of sponge feeding within Lake Baikal's littoral zone. 1. In situ pumping rates. Limnology and Oceanography 42:171–78. doi:10.4319/lo.1997.42.1.0171
  • Simpson TL. 1984. The Cell Biology of Sponges. New York: Springer. 662 pages.
  • Stuart V, Klumpp DW. 1984. Evidence for food-resource partitioning by kelpbed filter feeders. Marine Ecology Progress Series 16:27–37. doi:10.3354/meps016027
  • Thomassen S, Riisgård HU. 1995. Growth and energetics of the sponge Halichondria panicea. Marine Ecology Progress Series 128:239–46. doi:10.3354/meps128239
  • Yahel G, Eerkes-Medrano DI, Leys SP. 2006. Size independent selective filtration of ultraplankton by hexactinellid glass sponges. Marine Ecology Progress Series 45:181–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.